Breakup coupling effects on near-barrier ^6Li, ^7Be and ^8B + ^{58}Ni elastic scattering compared

Journal Article

How to cite:

Keeley, N.; Mackintosh, R. S. and Beck, C. (2010). Breakup coupling effects on near-barrier ^6Li, ^7Be and ^8B + ^{58}Ni elastic scattering compared. Nuclear Physics A, 834(1-4) 792c-795c.
Breakup Coupling Effects on Near-Barrier 6Li, 7Be and 8B + 58Ni Elastic Scattering Compared

N. Keeleya, R.S. Mackintoshb and C. Beckc

aDepartment of Nuclear Reactions, The Andrzej Soltan Institute for Nuclear Studies, ul. Hoża 69, 00-681 Warsaw, Poland

bDepartment of Physics and Astronomy, The Open University, Milton Keynes, MK7 6AA, United Kingdom

cInstitut Pluridisciplinaire Hubert Curien et Université Louis Pasteur, Boîte Postale 28, F-67037 Strasbourg Cedex 2, France

New data for near-barrier 6Li, 7Be and 8B + 58Ni elastic scattering enable a comparison of breakup coupling effects for these loosely-bound projectiles. Coupled Discretised Continuum Channels (CDCC) calculations suggest that the large total reaction cross sections for 8B + 58Ni are dominated by breakup at near-barrier energies, unlike 6Li and 7Be where breakup makes a small contribution. In spite of this, the CDCC calculations show a small coupling influence due to breakup for 8B, in contrast to the situation for 6Li and 7Be. An examination of the S matrices gives a clue to this counter-intuitive behaviour.

1. INTRODUCTION

Recent data [1] for near-barrier 6Li, 7Be and 8B + 58Ni elastic scattering allow some interesting comparisons for these weakly-bound nuclei. Optical model fits find much larger total reaction cross sections (σ_R) for 8B than for 6Li or 7Be, even when “reduced” [2]: while the reduced σ_R for other weakly-bound projectiles lie on a universal curve, those for 8B and 6He are significantly larger [1]. The low 8B \rightarrow 7Be + p breakup threshold (0.1375 MeV) suggests a dominant contribution to the direct part of σ_R. This is not automatic: for 6He with an $\alpha + 2n$ breakup threshold of 0.973 MeV, 1n- and 2n-stripping are the main contributors to σ_R at near-barrier energies. However, the weakly-bound proton in 8B experiences Coulomb barrier and charge polarisation effects tending to suppress transfer.

CDCC calculations [3] find that breakup does dominate the direct component of σ_R for 8B: as the cross sections are large — of the order of 100 mb or more — one might expect an equally important coupling effect on the elastic scattering angular distribution. However, this is not the case [3]. We thus have an apparent paradox: 6Li, with a relatively small breakup cross section, exhibits an important breakup coupling effect on the elastic scattering (see e.g. [4]) whereas 8B, with a large breakup cross section, shows only a modest coupling effect. A comparison of S matrices obtained from CDCC calculations for 6Li, 7Be and 8B + 58Ni provides a clue to this behaviour. Preliminary dynamic polarisation potentials (DPPs) are also presented.
2. CALCULATIONS

Calculations were performed with the code FRESCO [5]: only a brief outline is given here. The ^6Li, ^7Be and ^8B nuclei were modelled as $\alpha + d$, $\alpha + ^3\text{He}$ and $^7\text{Be} + p$ clusters, respectively. The ^7Be core was treated as inert but its non-zero spin was retained. Interaction potentials were obtained by Watanabe-type folding of global optical potentials, with a ^6Li potential as surrogate for ^7Be, the well-depths being adjusted to give the best fit to the data. The ^6Li and ^7Be calculations were similar to those in [4] and [6], but with finer continuum binning for ^7Be. The ^8B calculations included couplings to the $L = 0, 1, 2$ and 3 continuum and the 0.774 MeV 1^+ and 2.32 MeV 3^+ resonances. Good fits to all the data were obtained. Due to lack of space we show only results for the same values of $E_{\text{c.m.}} - V_B$ for each system, where V_B is the nominal Coulomb barrier, taking as our “benchmark” the ^8B data at $E_{\text{lab}} = 29.26$ MeV. This procedure yields values of $E_{\text{lab}} = 19.04$ and 24.12 MeV for ^6Li and $^7\text{Be} + ^{58}\text{Ni}$, respectively. In this way effects due to differences in projectile charge should be minimised.

Results are presented in Fig. 1: the coupling effect is much stronger for ^6Li and ^7Be, with $^6\text{Li} \rightarrow \alpha + d$ and $^7\text{Be} \rightarrow \alpha + ^3\text{He}$ breakup thresholds of 1.47 and 1.59 MeV, respectively, an order of magnitude larger than the $^8\text{B} \rightarrow ^7\text{Be} + p$ threshold. The $^6\text{Li} \rightarrow \alpha + d$ process has the additional peculiarity that it cannot proceed via dipole breakup. If we include population of the bound $1/2^-$ state in ^7Be (considering breakup as an inelastic excitation) the total breakup cross sections for both ^6Li and ^7Be are about a factor of three smaller than for ^8B. To obtain a clue to this apparent paradox, we show in Fig. 2 the modulus and argument of the J-weighted S matrices [7] obtained from full and no-coupling calculations. The coupling effect on $|S|$ is almost negligible for ^8B and largest for ^6Li, but qualitatively

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{Fig1.png}
\caption{CDCC calculations for ^8B, ^7Be and $^6\text{Li} + ^{58}\text{Ni}$ at $E_{\text{lab}} = 29.26$, 24.12 and 19.04 MeV. Solid and dashed curves denote full and no-coupling results, respectively.}
\end{figure}
Figure 2. $|S|$ and arg(S) from CDCC calculations for 8B, 7Be and 6Li + 58Ni at $E_{\text{lab}} = 29.26$, 24.12 and 19.04 MeV. Solid and dashed curves denote full and no-coupling results, respectively.

similar for all three nuclei: a decrease of $|S|$ at small L and an increase at large L. By contrast, for arg(S) the coupling effect is greatest for 8B, smallest for 7Be and intermediate for 6Li.

3. DISCUSSION

For protons and other light particles, changes in $|S|$ correspond to changes in the imaginary part of the potential, while changes in arg(S) correspond to changes in the real part. While this simple picture is not so clear-cut in the presence of strong absorption (as here) it provides a useful guide. Thus, the coupling effect on $|S|$ suggests reduced absorption at small L, switching to increased absorption at large L. The effect on arg(S) suggests repulsion at small L and attraction at large L. These effects are qualitatively similar for all three nuclei. The fact that the coupling effect on both the elastic scattering and $|S|$ is so small for 8B suggests that, paradoxical as it may seem for a coupling producing such a large cross section, its effective imaginary potential is small.

DPPs may be obtained by inversion of the S matrix, see e.g. [8]. In Fig. 3 we show the results of such a procedure for 8B and 7Be. Those for 7Be are preliminary; we expect the final DPPs to be somewhat smoother. While the DPPs are qualitatively similar,
short-range repulsion and long-range attraction combined with surface absorption (this behaviour seems to be universal, see e.g. [9]), the details are very different. The small

![Graph showing DPPs from CDCC calculations for 8B (solid curves) and 7Be (dotted curves).]

imaginary DPP for 8B is particularly striking, confirming the conclusions inferred from the S matrices. The surface repulsion for 8B is also much smaller than for 7Be, although for radii larger than about 9 fm it is significantly larger than for 7Be, having a longer, more repulsive tail. Our results show that a large cross section is no guarantee of a large coupling effect. The S matrices and DPPs shed some light on this, but it remains to be explained at a more fundamental level.

REFERENCES