
Open Research Online
The Open University’s repository of research publications
and other research outputs

Tracking clones’ imprint
Conference or Workshop Item
How to cite:

Lozano Rodriguez, Angela and Wermelinger, Michel (2010). Tracking clones’ imprint. In: 4th International
Workshop on Software Clones, 8 May 2010, Cape Town, South Africa.

For guidance on citations see FAQs.

c© 2010 Association for Computing Machinery

Version: Accepted Manuscript

Link(s) to article on publisher’s website:
http://dx.doi.org/doi:10.1145/1808901.1808910

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

http://oro.open.ac.uk/help/helpfaq.html
http://dx.doi.org/doi:10.1145/1808901.1808910
http://oro.open.ac.uk/policies.html

Tracking clones’ imprint

Angela Lozano
∗

Université Catholique de Louvain
2 Place Sainte Barbe

Louvain La Neuve, Belgium
angela.lozano@uclouvain.be

Michel Wermelinger
Computing Department

The Open University
Milton Keynes MK7 6AA, UK

http://michel.wermelinger.ws

ABSTRACT
Cloning imprint is the lasting effect of cloning on applica-
tions. This paper aims to analyze the clone imprint over
time, in terms of the extension of cloning, the persistence of
clones in methods, and the stability of cloned methods. Such
level of detail requires an improvement in the clone tracking
algorithms previously proposed, which is also presented.

We found that cloned methods are cloned most of their
lifetime, cloned methods have a higher density of changes,
and that changes in cloned methods tend to be customiza-
tions to the clone environment.

Categories and Subject Descriptors
D.2.7.m. [Software Engineering]: Distribution, Mainte-
nance, and Enhancement—Restructuring, reverse engineer-
ing and reengineering

General Terms
Cloning, Mining Software Repositories, Empirical Software
Engineering

Keywords
Clones, maintenance, changeability, impact, persistence, sta-
bility, extension.

1. INTRODUCTION
To assess the effect of cloning on the ease to change an

application, we analyze the evolution of cloned methods.
We refer to cloned methods to those methods that contain

∗
This work has been supported by The Open University gradu-

ate studentships, the ICT Impulse Programme of the Institute for
the encouragement of Scientific Research and Innovation of Brus-
sels (ISRIB), and by the Interuniversity Attraction Poles (IAP)
Programme of the Belgian State, Belgian Science Policy.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IWSC2010 May 8, 2010, Cape Town, South Africa
Copyright 2010 ACM 978-1-60558-980-0/10/05 ...$10.00.

clones1, regardless of the coverage of clones with respect
to the size of the method. This means that referring to a
method as cloned indicates that a portion of the method is
similar to a portion of another method.

In previous work we measured changes and co-changes of
methods while cloned vs. while not cloned [15], we compared
the ease to change cloned methods vs. not-cloned-methods
[13], and the relation between method characteristics and
their ease to change [14]. Our previous work tried to find
trends on the effect of clones in methods using measurements
that depended on the periods cloned and not cloned of each
method analyzed. In contrast, this paper provides a global
overview of the effect of cloning in the application using mea-
surements that capture commit by commit the evolution of
cloning in the application. Furthermore, as opposed to other
analyses on the extension of cloning we study the extension
of cloning over the history of the application. Moreover, as
opposed to other analyses on the persistence or stability of
cloning, we analyze how the changes observed in clone in-
stances affect cloned methods, providing an alternative view
on the impact of cloning. The analysis of the imprint of
cloning over time would show if its effects grow, shrink or
remain stable, as well as the rapidity of this behavior. These
imprint evolution trends would permit checking whether or
not cloning is a degenerative issue whose consequences be-
come unbearable over time, or if it is a stable phenomenon
whose consequences are restricted.

Our hypothesis was that clones have a negligible imprint
because previous results showed them as stable areas in the
source code [10], that were eliminated soon after they are
created [8], and that affected a small percentage of the ap-
plication (less than 25%) [3, 16, 12]. Nevertheless, we have
found that among methods that change, those cloned change
more than those not cloned which apparently contradicts the
findings published in [10]. Moreover, the changes in cloned
methods tend to be in lines of code cloned. We also found
that methods tend to be cloned most of their lifetime which
also contradicts a previous result [8]. Furthermore, we found
that cloned methods have a longer lifetime than methods not
cloned. In addition, we found that, over time, the percentage
of cloning inside methods reduces, and that this reduction
might be due to the customization of the clone by adding
code that affects the boundaries of cloned fragments. Fi-
nally, based on the imprint scale we proposed, it is possible
to conclude that clones that change can have an important

1A clone is a fragment of code repeated one or more times
in the source code of an application. We use CCFinder [7]
to detect similar code fragments of at least 30 tokens.

effect on the changeability of an application.

2. OUR APPROACH
In this section we explain in detail the collected data, why

it is relevant to the problem, and the process to collect it.

2.1 Metrics to evaluate the evolution of clones
This paper aims to assess the effect of cloning on the

changeability of the application. We achieve this by defining
three impact axes: extension, persistence, and stability.

2.1.1 Extension
The analysis of the extension permits to identify the mag-

nitude of cloning in the application, and at the level of meth-
ods. This is a first approach to assess its potential harm-
fulness. The evolution of the extension permits to evaluate
if the methods affected at the beginning are the only ones
that are affected in the application, or if cloning expands to
other methods over time.

1. Extension per method is the average ratio between
the number of cloned tokens and the total number to-
kens of the cloned methods at a given commit trans-
action.

2. Extension per application is the ratio between the
number of cloned methods and the total number of
methods that compose the application at a given com-
mit transaction.

2.1.2 Persistence
The analysis of the persistence permits to know if cloning

is a long-term issue. If cloning tends to disappear rapidly,
there is a chance that it does not affect the maintainability
of the application.

1. Persistence per method measures the percentage
of the lifetime of methods affected by cloning up to
the given commit transaction, i.e. it is the ratio be-
tween the number of commit transactions in which the
method had clones over the number of commit trans-
actions in which the method has been part of the ap-
plication.

2. Persistence per application is a measure of the av-
erage persistence of methods affected by cloning up
to the given commit transaction, i.e. it is the ratio
between the persistence of the clones in the methods
that had clones up to that commit transaction, over
the number of methods that had clones up to that
commit transaction.

2.1.3 Stability
The analysis of the stability of cloned methods in the ap-

plication in comparison with those that do not have clones
reveals whether or not clones may affect the methods that
host them, regardless of whether the changes are inside clones.
In addition, the analysis of stability inside the methods per-
mits to assess accurately to what extent the stability mea-
sured in cloned methods is indeed due to clones.

1. Stability per method is a measure of the instability
of a method that can be attributed to its clones. It
is calculated as the average ratio between the number

Stab. Persist. Ext. Impact Level
High Low Low 0. No effect
High Low High 1. Cloning occurs in a large per-

centage of the application but is
a volatile phenomenon that does
not affect negatively the stability
of methods

High High Low 2. Cloning is a persistent phe-
nomenon that affects a small
percentage of the application,
and does not affect negatively
the stability of methods

High High High 3. Cloning is a persistent phe-
nomenon that affects a large per-
centage of the application, but
does not affect negatively the
stability of methods

Low Low Low 4. Although cloning reduces
the stability of methods, it is
a small phenomenon that disap-
pears quickly

Low Low High 5. Cloning reduces the stability
of a large percentage of methods,
but it is a volatile phenomenon

Low High Low 6. Cloning reduces the stability
of methods for a large amount of
time, but it only affects a small
percentage of methods

Low High High 7. Cloning is a large and per-
sistent phenomenon that reduces
the stability of methods

Table 1: Scale (or levels) of cloning imprint

of changes2 in the cloned tokens, over the number of
changes in the method up to the given commit trans-
action.

2. Stability per application is a measure of the average
instability that can be linked to cloned methods at the
given commit transaction, i.e. it is the ratio between
the likelihood of change of the methods that had clones,
over the number of methods that had the clones up to
that commit transaction. The likelihood of change is
calculated as the number of changes in a method over
the number of commit transactions that the method
has been alive, up to that commit transaction.

There are eight possible levels of cloning imprint (Table 1),
which indicate the level of priority in which cloning should
be dealt with. In table 1 we propose to subordinate exten-
sion to persistence and stability because the extension just
acts as a multiplier of the persistence and of the stability.
Furthermore, a high extension of cloning is irrelevant if the
persistence is low or the stability is high, because a low per-
sistence or a high stability would indicate that clones do not
have a long term impact. Similarly, we subordinate the per-
sistence to the stability because a high persistence of clones
is irrelevant if the stability of clones is high: if the stabil-
ity is low there is a higher chance that cloning affects the
changeability of the application regardless of its persistence.

2.2 Tracking the evolution of clones
The measurements we gather define requirements on the

level of detail in the data collection, in particular we need
to be able to detect:

2Number of times that the text of a method or of a clone
has been modified from one version to the next.

1. methods that are part of the application at a given
commit transaction

2. methods that contain clones at a given commit trans-
action

3. tokens that compose the method at a given commit
transaction

4. tokens of the method that are cloned at a given commit
transaction

5. changes in methods between commit transactions

6. changes in clones between commit transactions

Tracking clones only by their location can result in inaccu-
rate data given that methods are renamed and moved during
their lifetime, and that methods may have several clones.
For instance, when deciding if the clone was changed, or
in analyses that take into account the characteristics of the
clone it is necessary to distinguish which clone is being an-
alyzed. Therefore, given that the identity of clone instances
does not only depend on the method (or source code entity)
that hosts them, it is necessary to track also their text.

Kim et al. [8] proposed to track clone instances across
changes by comparing the text and location of the clone in-
stances of version i and i-1. There are three cases to decide if
a clone instance is the new version of another clone instance:
if their location and their text are exact; if their location is
exact and their text is very similar; and if their text is exact
and their location is very similar. However, the approach
is incapable of detecting late propagations because it does
not compare the current clone instances with those that be-
longed to the family several changes ago. Furthermore, it
does not take into account the difference between late prop-
agations and independent evolutions, which is a key issue
when analyzing clones because they indicate to what extent
the lack of clone management causes bugs that are fixed by
late propagations. Furthermore, the subtraction of a clone
instance from its clone family3 may happen by chance in
two cases: if changes in the clone instance result in a simi-
larity below the threshold with the rest of the fragments in
the family, or if the method that has the cloned fragment
is deleted, the fragment would be identified as an element
removed from the cloned family. If the removal of cloned
fragments occurs in a clone family with only two fragments,
the clone family would be identified as deleted. This means
that with Kim’s approach for tracking clones over time it is
impossible to check if clones were removed by refactorings
or not. Some of these observations coincide with the issues
identified for tracking clones over time [5].

In order to tackle these issues we decided to track clones
by their belonging to a clone family (i.e. if they match with
the template established by the common code shared by the
family members), and their exact location (method, lines of
code, and tokens). Our procedure is as follows.

a. Collection of commit transactions Group the log
records of the trunk by author, message, and time. Or-
der the commit transactions chronologically, and save
them in a database.

3Set of code fragments that share the same clone, also known
as clone class or clone cluster.

b. For each commit transaction :

b1-Extract snapshot from CVS Get a snapshot of
the repository by the time when the commit trans-
action finishes.

b2-Find methods For each downloaded file, detect
the methods, and their boundaries in terms of
lines of code where the method is implemented.

b3-Find changes in methods Translate the lines
changed, added or deleted per file to methods
changed, and lines modified per method. Save
the methods that were modified in that commit
transaction in the database.

b4-Find clones Run the cloning detection algorithm
for all files that belong to the application code
base at that commit transaction.

b5-Find clones in methods Translate the clone de-
tection results into clone families, clone instances,
and cloned methods. If it is the first time, it re-
quires a translation of all results, otherwise it is
enough to translate the results related to the file
changes and propagate such translation, i.e. de-
tect whenever changes in a file could affect the
clones of unchanged files. Notice that there could
be clones added, modified and deleted in unchanged
files, because changing any file with which a clone
instance is cloned may be enough to change the
clone instance. If the file changed acquires, mod-
ifies, or deletes a code fragment that is similar to
a fragment in unchanged files, it is necessary to
update the clones in unchanged files.
Save the information collected for the correspond-
ing commit transaction into the database. In par-
ticular, for each clone instance store its clone fam-
ily, the parameters for the clone (the parts of the
cloned fragment that are not common to the rest
of the family), the method that hosts it, and the
tokens cloned in the host method. For each clone
family store the clone (template), and the location
of its instances. For each cloned method store the
families of its instances, and the clone pairs that
it forms with other methods.

b6-Find changes inside clones Translate the lines
changed per file to the clone instances and families
changed. A clone instance is considered changed
if the lines of code corresponding to its tokens
were modified. A family is modified if any of
its instances is changed, i.e. the instance still
shares the same common clone but its correspond-
ing lines were modified. Store in the database the
modifications done in that commit transaction:
the clone instances changed, the clone instances
added/deleted/or modified per clone family, and
update the tokens cloned per clone instance.

c. Find the origin of methods All methods that seem
new at each commit transaction are compared against
all methods that seem deleted in the same commit
transaction in order to detect renamings, or movement
of methods to other classes or packages (see [13]).

Freecol JEdit Gantt Columba JBoss
project module

Game Text Planning Mail J2EE
Purpose editor tool client app.

server
Methods 4050 8004 14616 28376 12132
Months 35 58 43 52 30
Changes 1087 1381 2701 3108 3346
Developers 14 13 20 16 86

Table 2: Characteristics of the analyzed applica-
tions. Number of methods is over the whole history,
after merging the lifetimes of renamed and moved
methods)

3. RESULTS
Five open source projects were analyzed over at least

thirty months (see Table 2). These projects vary in age,
size, and number of developers. The projects are differ-
ent in purpose. If we obtain different results, the differences
among applications would give us hints on factors that could
alter the effect of cloning. In case the effect is the same, we
have evidence to believe that domain factors are irrelevant
when evaluating the effect of cloning in the changeability of
an application.

3.1 Results of our tracking approach
As we explained previously, clone tracking techniques re-

quire improvements to be able to locate automatically late
propagations and clones whose method host has been re-
named. Table 3 shows that our technique is capable of de-
tecting both renaming and movement of the location of a
clone, and late propagations. This improved tracking per-
mits more accurate analyses of the effect of clones in meth-
ods. The changes on the location are detected using our
implementation of origin analysis. Late propagations (i.e.
clone instances that were not consistently changed) are de-
tected by checking if a method that is added to a clone
family has been part of that family before. In other words,
late propagations are located thanks to the separation be-
tween the clone family and the clone instance location. Inde-
pendent evolutions are detected by locating methods whose
clone instances stop belonging to their original family and
start belonging to a new family at a commit transaction,
but never go back to be part of the original family. Notice
that becoming again part of a family (i.e. fitting the tem-
plate established by the common code) is enough to detect
late propagations, and avoids checking of consistent changes
after every commit. Finally, changes in clone families are
calculated as additions, deletions, or changes in a method
with respect to its clone families. This automatic approach
indicates that the percentage of late propagations is much
lower than previously reported using manual detection [1],
but the percentage of independent evolutions found seems
much higher.

3.2 Evolution of clones
The ratio between the number of pairs of methods cloned

and the number of clone families is between 1.12 and 1.48
(Table 4). Given that clone families of three elements require
three pairwise cloning relations, the results on Table 4 mean
that the majority of clone families analyzed have only 2 clone
instances. However, notice that if the majority of families

Methods Late Indepen- Changes
cloned propa- dent clone

& renamed gations evolutions families
Freecol 25 9 1512 3187
JEdit 191 37 1538 3901
Ganttproject 97 7 1538 4449
Columba 641 0 12514 23264
JBoss mod. 83 37 5488 8110

Table 3: Usefulness of proposed tracking

have two instances, changes in a single method could af-
fect (even add or delete) several families, which makes clone
families very sensitive to changes.

Application clone pairs of
families methods cloned

Freecol 1159 1407
JEdit 1289 1454
Ganttproject 1728 2100
Columba 7340 10870
JBoss mod. 2649 3787

Table 4: Summary of identified clones

3.2.1 Extension per method
Figure 1 presents in the x-axis the commit transactions

in sequential order, and in the y-axis their corresponding
extension per method. That is, each dot is the average ra-
tio between the cloned tokens and the number of tokens in
cloned methods for an application at a commit transaction.

We have found that whenever methods are cloned, they
tend to be highly cloned (i.e. the extension is close to 100%),
in particular for large applications. However, over time the
percentage of cloning decreases. Note that until commit
1050 there is a rapid decrease in the percentage of cloning
per method in Ganttproject. From this commit onward,
several test classes are added, which could explain the slow
increase of the average of cloning inside methods given that
test methods tend to have clones.

Figure 1: Extension of cloning per method:
avg(tokens cloned / tokens in method)

3.2.2 Extension per application
Figure 2 presents the extension per application at each

commit transaction. We have found that the percentage
of cloning in the application is between 8% and 45% of the
application, but it tends to remain stable over time, between
10% and 20 %.

The curves tend to be continuous, but there are some
discontinuities in Ganttproject, JBoss, and Columba which

Figure 2: Extension of cloning in the applications:
methods cloned / methods in application

indicate exceptional events, related with deletion or addition
of a large number of methods. For instance, all discontinu-
ities in Ganttproject are due to method deletion. When the
majority of the deleted methods were cloned, the curve fell;
when the majority of the deleted methods were not cloned,
the curve raised. The discontinuities in JBoss are related
with a package that handles pools of objects in which 38% of
methods are cloned. When that package was added (commit
87) the curve jumped up; when that package was replaced
by a jar maintained by a third party (in commit 825) the
curve fell. The largest discontinuity is found in Columba, by
the end of the analyzed history, after commit 3072. In these
last commits, the developers are restructuring the applica-
tion to migrate from CVS to SVN. Judging by the messages
of these commits, they copied most of the code to a different
directory structure, while at the same time they fixed warn-
ings, updated the documentation, standardized the format
of the code, and added some key functionality.

3.2.3 Persistence per application
Figure 3 shows the persistence per application for each

commit transaction, i.e. the average percentage of the meth-
ods’ lifetime in which they have clones.

The results show that, in average, methods are cloned
at least 85% of their lifetime. For all applications the per-
sistence is in the same range, presenting some exceptional
events (sudden increase or sudden reduction), but tending to
stabilize between 90% and 95%. The largest discontinuities
are in Freecol, Ganttproject, and Columba. The largest dis-
continuity in Freecol (in commit 803) happened because 27
preexistent methods became cloned. The one in Ganttpro-
ject (in commit 427) happened because 43 methods were
created cloned. As for Columba, the jump at the end occurs
because the application is being restructured by copying and
pasting methods from the current code-base into other di-
rectories.

Figure 3: Persistence of cloning in methods that had
clones: avg(commits cloned / commits alive)

3.2.4 Stability per method
Figure 4 presents the stability per method for all the com-

mit transactions analyzed. The y-axis is the ratio between
the changes inside the cloned fragments and the overall changes,
for cloned methods up to each commit transaction. Figure 4
shows that most of the changes when a method is cloned
occur inside the cloned fragment. This result is consistent
with the fact that cloned fragments cover the majority of the
method (see Fig. 1), making changes more likely to occur in
the cloned area. Notice that for all applications the stability
is low in the first commits, indicating that the cloned areas
are stable while an initial code-base is established.

3.2.5 Stability per application
Figure 5 shows the stability per application i.e. the changes

due to cloned methods in the application, up to that commit
transaction. Figure 5 shows that from all the changes that
occur in the application between 20% and 40% occur when
methods are cloned. Note that the majority of changes in
cloned methods occur at the beginning of the application’s
history, and that the stability varies significantly in the first
300 commits. This could indicate that cloned methods are
very sensitive to the maturity of the application’s code-base.

Figure 4: Stability of cloned methods: avg(changes
inside clones / changes while cloned)

Figure 5: Stability of the applications due to cloned
methods: avg(changes in cloned methods / changes
in the application)

3.3 Analysis of results

3.3.1 Extension per method
There are three possible explanations for the decrease of

the clone extension inside methods:

• extension of methods that do not touch the clones

• volatile and intermittent clones

• fragmentation of clones over time

In order to analyze these possibilities we checked:

• Whether or not the methods grow over time

• The lifetime of clones vs. the lifetime of methods

• Whether or not the clones shrink over time

The results of these checks are summarized in Table 5, which
shows that method growth could explain the decrease of
cloning extension. In order for the extension of cloning to
decrease, the new code cannot be cloned. Moreover, given
that most of the changes while cloned occur inside the cloned
fragments, the new code would probably affect the clones
inside the method. These extra lines in methods support
the hypothesis of method growth, that does not fragment
or eliminate clones. Table 5 also shows that the average
lifetime of a clone instance tends to be longer than the
average lifetime of a method, and therefore the hypothe-
sis of volatile clones should be discarded. Finally, Table 5
shows that clones hardly grow or shrink over time, rejecting
the fragmentation hypothesis. By analyzing the changes in
some cloned methods (randomly chosen) we have found that
changes to cloned methods tend to affect the boundaries of
the cloned fragments. Some changes make the clone frag-
ment to expand several tokens, while other changes make
the clone fragment to contract. However, the center of the
clone fragment remains intact. This behavior indicates that
changes in cloned methods customize the environment of the
cloned fragment.

Method Clone Method Clone
Application growth pair growth life inst. life

(LOC) (tokens) (commits) (commits)
Freecol +9.79 +0.56 466.5 536.3
JEdit -1.17 +0.65 519.6 607.0
Ganttpr. +1.88 +1.15 270.2 493.2
Columba +0.04 +0.37 580.8 590.9
JBoss m. +4.34 +0.52 787.5 863.5

Table 5: Possible explanations for the decrease of
cloning extension inside methods

Results also show that the decrease of the cloning ex-
tension inside methods is slower in large applications. A
possible explanation for this difference between applications
could be that clones of large applications are changed less
than the clones of smaller applications. We have found that
the average number of changes in the clone per pair of meth-
ods was 9.5, 8.5, and 8.4, for Freecol, JEdit and Ganttpro-
ject respectively. However, the average number of changes
in the clone per pair of methods was just 4.1 for Columba
and 5 for JBoss. The fact that Columba and JBoss show
fewer changes per clone relation cannot be explained by less
change in these applications, because all applications have
the same average of two changes per method.

3.3.2 Extension per application
Given that the size of the applications increased over time

and that the extension of cloning tends to be stable, we con-
clude that cloning increases in a proportional rate with the
size of the application. Furthermore, there does not seem
to be a policy of clone removal in any of the applications
analyzed, because most of the changes in the extension of
cloning are due to accidental modification of the ratio be-
tween cloned and not cloned methods.

3.3.3 Persistence per application
We have found that cloned methods tend to be cloned

most of their lifetime. This indicates that clones are not
refactored but eliminated when its host method is elimi-
nated, which is consistent with the sensitivity of small clone
families to changes. Notice that the fact that cloning is per-
sistent inside methods does not necessarily contradict the
fact that clone instances are volatile [8]. It could be that
the similarity between cloned methods of a family persists
after changes but is not enough to be considered the same
family, so that the methods keep being cloned but as dif-
ferent instances that belong to different families. In fact,
our definition of persistence is relative to the lifetime of the
method, while the one analyzed in [8] is absolute (in terms
of number of commits). However, in Table 5 we have shown
that clone instances have long lifetimes. We think that the
difference of results is due to the choice of applications: we
have previously [13] warned of the issues of using DnsJava
to analyze clone behaviour, as it is an application that is
continually restructured by cloning chunks of functionality
in other directories.

3.3.4 Stability per method
By analyzing the instability due to clones we have found

that the majority of changes in cloned methods occur inside
the clones. Although one might think that this result is
not significant as the majority of cloned methods is covered
by clones, notice that even when the extension of cloning
inside methods is low (at the final of the history analyzed)
the majority of changes in cloned methods are inside its
clones. This behavior make us believe that cloning is indeed
a driving factor for changes at the level of methods.

3.3.5 Stability per application
Figure 2 shows that the percentage of cloned methods in

the applications analyzed is between 10% and 20% of the ap-
plication. Figure 5 shows that of all the changes that occur
in the application between 20% and 40% occur when meth-
ods are cloned. That is, 10–20% of the methods (i.e. those
cloned) cause 20–40% of the changes. Hence, we hypothe-
sized that cloned methods tend to have a larger number of
changes than methods without clones. Such hypothesis is
supported by the fact that cloned methods are more likely
to change than methods without clones (Table 6). Note
that the percentage of clone methods that changed is larger
than the percentage of methods not cloned that change in
every application, and that the difference is considerably
larger for cloned methods. Again, note that a larger num-
ber of changes when cloned might be due just to the fact
that cloned periods are larger than not cloned periods (as
cloned instances tend to have larger lifetimes than the av-
erage method). It seems that our results contradict those
presented in [10]. However, note that the stability can be
calculated only for those methods that change at least once
in their lifetime. Therefore, it is possible that both results
are correct. That is, the lines of cloned code change less than
those not cloned, but cloned code that changes is highly con-
centrated in certain methods.

Finally, it seems that the average extension per method
and the stability of the application are inversely related.
In the first commits, when the extension of cloning inside
methods is the highest, the stability is the lowest. As the the
extension of cloning inside methods decreases, the number

Methods Methods Increase of
with without chance of

clones that clones changing for
change that change cloned methods

Freecol 65% 31% 109%
JEdit 65% 44% 47%
Ganttproject 39% 11% 254%
Columba 38% 22% 72%
JBoss 45% 22% 104%

Table 6: Average percentage of methods that
change, cloned vs. not cloned

of changes in cloned methods increase w.r.t. the number of
changes in methods not cloned. This relation is consistent
with the hypothesis that the lines of code added to methods
are not cloned but modify the boundaries of clone instances
without fragmenting them.

4. THREATS TO VALIDITY
The experiment seems internally valid as the dependent

variables (i.e. impact of cloning measured as its persis-
tence, stability, and extension) can be caused by the in-
dependent variables (i.e. methods at the commit transac-
tions analyzed). Given that our approach to track clone
instances distinguishes late propagations from independent
evolutions, detects changes in the identification of the clone
location, and distinguishes clone elimination from method
elimination there is a higher confidence in the reliability of
the data. Besides, the risk of confounding factors is reduced
in two ways:

• by increasing the level of detail of analysis (extension of
clones inside methods, and the changes inside clones);

• by gathering additional data (method and clone growth,
method and clone lifetime, methods that change) to
validate or to discard hypotheses obtained from the
analysis of the results.

We developed tools for the data collection and analysis. Al-
though using tools increases the reliability, by following the
same protocol in all case studies and reducing possible bias,
it also increases the chances of undetected problems in the
data collection and analysis. However, these tools are the
result of several iterations analyzing the evolution of clones
[15, 13, 14] and therefore the number of undetected bugs
should be low.

Notice that choices in the experiment setup could affect
significantly the types of clones found, and therefore their
evolution. For instance, the minimum size of a clone, the
programming language and programming paradigm of the
applications analyzed. For that reason, we chose a common
clone detection setup4, and we selected several applications
with two pre-established conditions: being written in Java,
and having their code repository in CVS. Moreover, we de-
cided to analyze diverse applications in order to find com-
monalities in the evolution of cloning regardless of the appli-
cation domain. Our setup was successful in the sense that

4Note that although CCFinder is designed to find type I
(exact) and type II (parameterized) clones, the choice of a
small set of tokens to consider a fragment as cloned could
help to detect type III (fragmented) clones.

we got similar results for all applications analyzed. Nev-
ertheless, the conclusions are limited to open source Java
applications.

5. RELATED WORK
The first attempt to track the evolution of a clone was

done by locating the function that hosted it from a version
to the next, and consistent and inconsistent changes were
documented as the application analyzed evolved [11]. Af-
terwards, clone instances were tracked across versions by
comparing previous vs. current location and lines of code
[8], which allowed to model the changes that a clone family
could undergo. This initial model of clone family evolution
was extended by introducing the concept of late propaga-
tions [1], but they were not detected automatically. There-
fore, current approaches to track the evolution of clones are
not accurate enough to distinguish late propagations from
independent evolutions [5]. This paper proposes an alter-
native to overcome these issues, and to assess the impact
(imprint) of cloning in an application.

The analysis of the impact of clones has focused on mea-
suring to what extent cloned code requires consistent changes.
Most of previous work found that the chance of requiring a
consistent change is at most 50% [11, 15, 9, 8]. In fact, no
statistical relationship could be found between being cloned
and changing at the same time [4]. Nevertherless, there is no
agreement on the need of consistent changes in cloned code.
While some authors point out that inconsistent customiza-
tion of clones results in many bugs [12], others indicate that
inconsistencies among clones of the same family tend to last
less than 24 hours [1], and that just 7-8% of clones generate
faults due to unintentional inconsistent changes [6].

Regarding the effect of clones on the quality of the code,
there is some empirical evidence that indicates that many
faults in Operating Systems can be linked to clones [2].

There have been also studies that have analyzed the ex-
tension, persistence, and stability of cloned code. Several
authors have reported the percentage of the application af-
fected by cloning. Although the results vary a lot among dif-
ferent publications, many of them have found that cloning
in an application is below 25% of the source code entities
analyzed [3, 16, 12], which is consistent with our results.
Kim et al. found that the majority of clone instances lasted
less than 8 commits [8]. A reason that could explain the
divergence of results is that the application analyzed in [8]
(dnsJava) has an unusual cloning evolution [13]. However,
note that we obtained similar results for all the applications
analyzed, which indicates that a cloning evolution such as
the one found in dnsJava is more the exception than the rule.
Furthermore, this divergence highlights the importance of
analyzing typical clones and typical evolution of cloning.

Krinke found that lines of code cloned are more stable
than those not cloned [10]. Our previous studies showed
that cloned methods change more, and their changes affect
a higher number of methods when they are cloned [15, 13].
However, our analyses have been restricted to methods that
change, which could affect the results in comparison with
those of Krinke[10]. It is expected to find that cloned code
changes less because cloned code is scarce in comparison
with code not cloned. However, our paper takes a relative
view at changes in cloned code: starting from methods that
change, we checked which ones were cloned and which ones
were not. The relative measurement permits to conclude

that cloned methods are more prone to change, even though
code not cloned changes more. Another reason to explain
the difference of conclusions is the type of clones analyzed,
given that we detect clones of at least 30 tokens (approx. 3
LOCs) while Krinke [10] only analyzes clones of at least 15
LOCs. However, regardless of the likelihood of changes in
lines of code cloned, we have shown that cloned code that
changes is highly concentrated in certain methods. More-
over, that these cloned methods that change, change more
than methods not cloned that change. To summarize, this
paper contradicts two previous works: one that concluded
that cloned code is more stable than code not cloned [10],
and one that concluded that clones are volatile [8].

6. CONCLUSION
We proposed a new approach to track clone instances over

time, which is resilient to events that current approaches
cannot identify automatically: moves or renames of the source
code entity that hosts the clone instance, late propagations,
independent evolutions, and deletion of source code entities.

We also analyzed the cloning imprint by measuring the
extension, persistence, and stability of clones in methods.
Cloning extension remains stable in 10–20% of an appli-
cation. Moreover, the events that affect cloning seriously
are events of method creation and deletion, e.g. restructur-
ing, adding packages, or integrating libraries. We have also
found that cloned code covers the majority of cloned meth-
ods. This indicates that clone creation increases at the same
rate as method creation. Cloning extension inside methods
decreases slowly over time, probably due to customizations
to the clone environment that only touch the boundaries of
clone instances, and therefore do not fragment them.

Cloning is persistent as all applications presented cloning
all their lifetime, and cloned methods had clones at least
85% of their lifetime.

Finally, cloned methods have a higher density of changes
than methods not cloned. Furthermore, the majority of
changes inside cloned methods occurred inside the cloned
fragment, which is consistent with the high clone extension
inside methods.

To sum up, cloning presents low stability, high persistence,
and low extension, having a imprint level of 6 out of 7 (Ta-
ble 1). This means a noticeable impact because, in spite of
only affecting a small percentage of methods (cloned meth-
ods that change), cloning can reduce a lot the stability of
methods for a large amount of time. Therefore, cloning af-
fects the changeability of an application by shifting efforts
from new requirements to clone tuning and maintenance.
Nevertheless, it is important to analyze to what extent there
is an increase in costs given that cloned methods tend to last
longer than methods not cloned.

Future work will focus on describing typical clones, and
the changes that affect cloned methods.

7. REFERENCES
[1] L. Aversano, L. Cerulo, and M. D. Penta. How clones

are maintained: An empirical study. In Proc. of the
European Conf. on Software Maintenance and
Reengineering (CSMR’07), pages 81–90. 2007.

[2] A. Chou, J. Yang, B. Chelf, S. Hallem, and D. Engler.
An empirical study of operating systems errors. In
Proc. of the eighteenth ACM symp. on Operating
systems principles ’01, pages 73–88. 2001.

[3] S. Ducasse, M. Rieger, and S. Demeyer. A language
independent approach for detecting duplicated code.
In Proc. Int’l Conf. on Software Maintenance
(ICSM’99), pages 109–118. 1999.

[4] R. Geiger, B. Fluri, H. C. Gall, and M. Pinzger.
Relation of code clones and change couplings. In Proc.
of the Int’l Conf. of Fundamental Approaches to
Software Engineering (FASE’06), pages 411–425. 2006.

[5] J. Harder and N. GŽde. Modeling clone evolution. In
Proc. Int’l Workshop on Software Clones (IWSC’09).

[6] E. Juergens, F. Deissenboeck, B. Hummel, and
S. Wagner. Do code clones matter? In Proc. of the
Int’l Conference on Software Engineering (ICSE’09),
pages 485–495. 2009.

[7] T. Kamiya, S. Kusumoto, and K. Inoue. Ccfinder: a
multilinguistic token-based code clone detection
system for large scale source code. IEEE Trans. Softw.
Eng., 28(7):654–670, 2002.

[8] M. Kim, V. Sazawal, D. Notkin, and G. Murphy. An
empirical study of code clone genealogies. In Proc. of
the European Softw. Eng. Conf. and symp. on
Foundations of Softw. Eng. (ESEC-FSE’05), pages
187–196. 2005.

[9] J. Krinke. A study of consistent and inconsistent
changes to code clones. In Proc. Working Conf. on
Reverse Engineering (WCRE’07). 2007.

[10] J. Krinke. Is cloned code more stable than non-cloned
code? In Proc. of the int’l workshop on Source Code
Analysis and Manipulation (SCAM’08), pages 57–66.
2008.

[11] B. Lague, D. Proulx, J. Mayrand, E. M. Merlo, and
J. Hudepohl. Assessing the benefits of incorporating
function clone detection in a development process. In
Proc. Int’l Conf. on Software Maintenance (ICSM’97),
pages 314–321.

[12] Z. Li, S. Lu, S. Myagmar, and Y. Zhou. Cp-miner:
Finding copy-paste and related bugs in large-scale
software code. IEEE Trans. Softw. Eng.,
32(3):176–192, 2006.

[13] A. Lozano and M. Wermelinger. Assessing the effect of
clones on changeability. In Proc. Int’l Conf. on
Software Maintenance (ICSM’08), pages 227–236.
2008.

[14] A. Lozano, M. Wermelinger, and B. Nuseibeh.
Evaluating the relation between changeability decay
and the characteristics of clones and methods. In Proc.
Int’l Workshop on Software Evolution (Evol’08), pages
100–109.

[15] A. Lozano, M. Wermelinger, and B. Nuseibeh.
Evaluating the harmfulness of cloning: a change based
experiment. In Proc. of the int’l workshop on Mining
Software Repositories (MSR’07), pages 18–21. 2007.

[16] A. Monden, D. Nakae, T. Kamiya, S.-i. Sato, and K.-i.
Matsumoto. Software quality analysis by code clones
in industrial legacy software. In Proc. int’l symp. on
Software Metrics (METRICS’02), pages 87–94. 2002.

