The Open UniversitySkip to content

Magmatic And Tectonic Evolution Of Southern Tibet And The Himalaya

Williams, Helen Myfanwy (2000). Magmatic And Tectonic Evolution Of Southern Tibet And The Himalaya. PhD thesis The Open University.

Full text available as:
PDF (Version of Record) - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
Download (14MB)
Google Scholar: Look up in Google Scholar


The Himalaya-Tibetan orogen has become the paradigm for continental collision and is central to deciphering continental tectonics. Neogene extension in the orogen is not predicted by plate tectonic theory, and its significance is widely debated.

In the Himalaya, north-south extension is restricted to the Southern Tibetan Detachment System (STDS), which juxtaposes the High Himalayan Crystalline Series (HHCS) against the Tibetan Sedimentary Series (TSS). 40Ar-39Ar ages from HHCS and TSS of the Garhwal Himalaya indicate that STDS movement initiated between 17.3 ± 0.4 to 24.3 ± 1.6 Ma (2σ), synchronous with Main Central Thrust (MCT) movement. One-dimensional thermal modelling suggests that the STDS is a reactivated thrust, implying a fundamental change in Himalayan tectonics in the early Miocene.

The onset of east-west extension in southern Tibet is constrained by north-south trending shoshonitic dykes to be 13.3 ± 0.8-18.3 ± 2.7 Ma. Trace-element modelling indicates that the shoshonitic dykes and associated lavas in southern and northern Tibet were derived by ≤2% melting of enriched sub-continental lithospheric mantle (SCLM) at 65-85km. The northern and southern shoshonites have distinctive isotopic (εNd(i), north, -5.5 to-10.3; south -8.8 to - 18.1) and major element signatures that relate to distinct SCLM sources corresponding to the tectonically accreted terranes of the plateau. The trace-element compositions of these sources, determined by inverse modelling, suggest subduction-related metasomatism. 40Ar- 39Ar dating of xenocrystic phlogopites indicates metasomatism of the southern SCLM occurred at 62±2 Ma, synchronous with collision.

These data link Neogene extension to a thermally perturbed lithosphere. SCLM thinning following slab detachment explains magmatism, extension and uplift in southern Tibet. Episodic convective removal of the SCLM is proposed for northern Tibet. In view of these models, initiation of extension at 18.3±1.6 Ma in southern Tibet places a minimum constraint on plateau uplift. This overlaps with STDS and MCT movement, implying that changes in Himalayan tectonics are controlled by plateau uplift.

Item Type: Thesis (PhD)
Copyright Holders: 2000 The Author
Keywords: Tibet; magmatism; geology; plate tectonics; Himalaya Mountains
Academic Unit/School: Faculty of Science, Technology, Engineering and Mathematics (STEM) > Environment, Earth and Ecosystem Sciences
Item ID: 19788
Depositing User: Ann McAloon
Date Deposited: 29 Jan 2010 11:47
Last Modified: 10 Apr 2018 08:34
Share this page:

Download history for this item

These details should be considered as only a guide to the number of downloads performed manually. Algorithmic methods have been applied in an attempt to remove automated downloads from the displayed statistics but no guarantee can be made as to the accuracy of the figures.

Actions (login may be required)

Policies | Disclaimer

© The Open University   contact the OU