The Open UniversitySkip to content

Contribution of crustal anatexis to the tectonic evolution of Indian crust beneath southern Tibet

King, Jess; Harris, Nigel; Argles, Tom; Parrish, Randall and Zhang, Hongfei (2011). Contribution of crustal anatexis to the tectonic evolution of Indian crust beneath southern Tibet. Geological Society of America Bulletin, 123(1-2) pp. 218–239.

Full text available as:
Full text not publicly available (Accepted Manuscript)
Due to publisher licensing restrictions, this file is not available for public download
Click here to request a copy from the OU Author.
DOI (Digital Object Identifier) Link:
Google Scholar: Look up in Google Scholar


This geochemical, geochronological and structural study of intrusive rocks in the Sakya Dome of southern Tibet has identified two distinct suites of anatectic granites that carry contrasting implications for the tectonic evolution of the India-Asia collision zone. The northern margin of the dome core was intruded by anastomosing, equigranular two-mica garnet granites between 28.1 ± 0.4 Ma and 22.6 ± 0.4 Ma, coeval with top-to-the-south shear. Trace-element and isotopic (Sr-Nd) characteristics indicate an origin from partial melting of a biotite-bearing source in the Indian crust, under conditions of high fluid-phase activity. These granites thus provide evidence for the melt weakening required by some thermo-mechanical models that predict the southwards extrusion of a low-viscosity channel during the Oligocene. Evidence for subsequent shear-sense reversal may document initiation of this process. However, a younger suite of porphyritic two-mica granite plutons, emplaced between 14.5 ± 0.9 Ma and 8.81 ± 0.22 Ma, are derived from anatexis of muscovite-bearing metasediments of the High Himalayan Series under fluid-absent conditions. Ar-Ar cooling ages of 14.4 to 8.0 Ma from the Sakya dome postdate crystallisation of the Oligocene granite suite by ca. 10 Ma, but are coincident with mid-Miocene granite emplacement, suggesting uplift to depths of <10 km by the mid-Miocene. We propose that plate flexural response to Miocene slab steepening is a likely cause of dome uplift, and that this exhumation of mid-crustal rocks triggered decompression melting at 15-9 Ma and emplacement of discrete granite plutons into the upper crust under brittle conditions.

Item Type: Journal Item
Copyright Holders: 2010 Geological Society of America
ISSN: 0016-7606
Academic Unit/School: Faculty of Science, Technology, Engineering and Mathematics (STEM) > Environment, Earth and Ecosystem Sciences
Faculty of Science, Technology, Engineering and Mathematics (STEM)
Item ID: 19608
Depositing User: Nigel Harris
Date Deposited: 10 May 2010 21:45
Last Modified: 08 Dec 2018 03:12
Share this page:


Altmetrics from Altmetric

Citations from Dimensions

Actions (login may be required)

Policies | Disclaimer

© The Open University   contact the OU