
Open Research Online
The Open University’s repository of research publications
and other research outputs

Exploring the Influence of Identifier Names on Code
Quality: An empirical study
Conference or Workshop Item

How to cite:

Butler, Simon; Wermelinger, Michel; Yu, Yijun and Sharp, Helen (2010). Exploring the Influence of Identifier
Names on Code Quality: An empirical study. In: 14th European Conference on Software Maintenance and
Reengineering, 15-18 Mar 2010, Madrid, Spain, pp. 156–165.

For guidance on citations see FAQs.

c© 2010 IEEE

Version: Accepted Manuscript

Link(s) to article on publisher’s website:
http://dx.doi.org/doi:10.1109/CSMR.2010.27
http://www.sait.escet.urjc.es/csmr2010/index.html

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

http://oro.open.ac.uk/help/helpfaq.html
http://dx.doi.org/doi:10.1109/CSMR.2010.27
http://www.sait.escet.urjc.es/csmr2010/index.html
http://oro.open.ac.uk/policies.html


Exploring the Influence of Identifier Names on Code Quality: an empirical study

Simon Butler, Michel Wermelinger, Yijun Yu, Helen Sharp
Centre for Research in Computing, The Open University, Milton Keynes, UK

Abstract—Given the importance of identifier names and
the value of naming conventions to program comprehension,
we speculated in previous work whether a connection exists
between the quality of identifier names and software quality.
We found that flawed identifiers in Java classes were associated
with source code found to be of low quality by static analysis.
This paper extends that work in three directions. First, we show
that the association also holds at the finer granularity level
of Java methods. This in turn makes it possible to, secondly,
apply existing method-level quality and readability metrics, and
see that flawed identifiers still impact on this richer notion of
code quality and comprehension. Third, we check whether the
association can be used in a practical way. We adopt techniques
used to evaluate medical diagnostic tests in order to identify
which particular identifier naming flaws could be used as a
light-weight diagnostic of potentially problematic Java source
code for maintenance.

Keywords-programming; software metrics; software quality;

I. INTRODUCTION

Identifier names constitute the majority of tokens in source
code [1] and are the primary source of conceptual infor-
mation for program comprehension [2]. Identifier names
are created by designers and programmers and reflect their
understanding, cognition and idiosyncrasies [3]. The impact
of low quality identifier names on program comprehension is
reasonably well understood [1], [4], [5], but little is known
about the extent to which the quality of identifier names
might influence the quality of source code.

Given that poor quality identifier names are a barrier to
program comprehension, and that they may indicate a lack of
understanding of the problem, or the solution articulated in
the source code, we hypothesise that poor quality identifier
names indicate poor quality source code that translates into
poor quality software. In previous work [6], we showed
connections between flawed identifier names and FindBugs
warnings [7] in Java classes. In this paper we expand on
our previous work by investigating the quality of identifiers
and source code in Java methods. At this finer-grained level
of analysis we employ the cyclomatic complexity metric
[8] and the maintainability index [9] to evaluate the quality
of source code. In addition, we evaluate the readability of
methods using a readability metric [10]. We also repeat
our investigation of source code quality with FindBugs [7]
with the expectation of finding more focused results because
the class-level specific FindBugs warnings included in our
previous work, are excluded from this study at the method

level. We also seek to verify the link between the readability
of source code and FindBugs warnings found by Buse and
Weimer [10]. In addition, we explore whether our findings
may be applied as a low-cost heuristic to identify potentially
problematic regions of source code.

The remainder of this paper is structured as follows:
in Section II we examine related work before turning in
Sections III and IV to the underlying concepts of identifier
and source code quality used in this paper. We give an
account of our methodology in Section V and report our
results in Section VI. In Sections VII and VIII we discuss
our results and draw conclusions.

II. RELATED WORK

Existing research on source code readability focuses on
the contribution the components of source code make to
readability [10], and the way in which the semantic content
of identifiers contributes to readability and program compre-
hension [1], [5], [2].

A longitudinal study of identifier names by Lawrie et
al. [4] showed that identifier name quality has improved
during the last thirty years. The same study also found
that identifiers in proprietary source code typically contained
more domain-specific abbreviations than open source code.
However, the study also found that identifiers change little
following the initial period of software development. This
is confirmed by Antoniol et al. [11] who also argue that
programmers may be more reluctant to change identifier
names than source code, because of the lack of tool support
for managing identifier names. In [5], Lawrie et al. detail
an empirical study which found identifier names composed
of dictionary words were more easily understood than those
composed of abbreviations or single letters.

Rajlich and Wilde emphasise the importance of identifiers
as the primary source of conceptual information for program
comprehension [2]. Deissenboeck and Pizka [1] developed a
formal model for the semantics of identifier names in which
each concept is represented by just one identifier throughout
a program. The model excludes the use of homonyms and
synonyms, thus reducing the opportunities for confusion.
The authors found the model to be an effective tool for
resolving difficulties with identifier names found during
program development.

A study of the morphological and grammatical features
of identifier names in C, C++, Java and C# by Liblit et al.
[12] found that identifiers are best understood within their



working context. Instance variables, for example, are cou-
pled with method names in object-oriented languages, and
method names are often conceived with this relationship in
mind. Field and variable names have grammatical structures
that reflect their independence. The grammatical structure
of method names is further differentiated by the need to
reflect the action the method performs and whether it has
side effects, or takes one or more arguments.

Relf [13] identified a set of cross-language identifier nam-
ing style guidelines from the programming literature, and in-
vestigated their acceptance by programmers in an empirical
study. Relf implemented the naming style guidelines in a tool
to help programmers create good quality identifiers and to
refactor existing identifiers [14]. Abebe et al. [15] developed
a system to recognise ‘lexicon bad smells’ – grammatical
and other flaws – in identifiers, thereby identifying identifier
names for possible refactoring.

Little work, however, has been done to explore the pos-
sible connections between identifier naming, source code
readability and software quality.

Two studies by Boogerd and Moonen [16], [17] applied
the MISRA-C: 2004 coding standard [18] to measure the
quality of source code before and after bug fixes during the
development of two closed source embedded C applications.
They found that while compliance with some of the rules
increased as defects were fixed, bug fixes also introduced
violations of other rules. In other words, code with fewer
defects, and hence of higher quality, is deemed to be of
lower quality by some of the coding rules. The authors also
found that though they could identify rules with a positive
influence on software quality in each of the two studies, the
rules did not have consistent effects, including the four rules
related to identifiers common to both studies.

Buse and Weimer [10] developed a readability metric
for Java derived from measurements of, among others, the
number of parentheses and braces, line length, the number
of blank lines, and the number, frequency and length of
identifiers. Using machine learning, the readability metric
was trained to agree with the judgement of human source
code readers. Buse and Weimer found a significant statistical
relationship between the readability of methods and the
presence of defects found by FindBugs [7] in open source
code bases. Although their work makes a link between
readability and software quality, their notion of readability
ignores the quality of identifier names.

In work classifying the lexicon used in Java method
identifiers, Høst and Østwold advance the idea that, because
of the effort required to select a good identifier name,
identifiers reflect the cognitive processes of programmers
and designers [3]. Consequently, identifiers may then reflect
the misunderstandings of the creator of the identifier and
misdirect the readers of source code.

The existing literature establishes the need for good iden-
tifier names to support program comprehension. However,

only tentative steps have been taken to demonstrate their
relationship to source code quality. In previous work [6],
we explored the relationship between flawed identifiers and
FindBugs defects in Java classes. We found some relation-
ships, which we explore further in this paper with finer-
grained analysis, and by increasing the number of metrics
used to measure source code quality.

III. IDENTIFIER QUALITY

The multifactorial nature of identifier quality makes mea-
surement problematic. For the purposes of this study we con-
strained our measurement of identifier quality to typography
and the use of known natural language elements, and ignored
detailed assessments of semantic content and the use of
grammar. Rather than apply an arbitrary set of rules derived
from a single set of programming conventions, we used a
set of empirically evaluated identifier naming guidelines.

Relf derived a set of twenty-one identifier naming style
guidelines for Ada and Java from the programming literature
[13]. Most of the guidelines, which were evaluated in an
empirical study, do not deviate significantly from the Java
identifier naming conventions [19], [20] and as they have
been developed in other widely used conventions [21].

Relf’s identifier naming style guidelines combine typog-
raphy and a simple approach to natural language, but were
not intended to be used as rules to evaluate the quality
of identifier names. Accordingly we found it necessary to
update some guidelines to define more precisely what was
not permitted, and renamed some to reflect the proscriptive
sense in which we applied them.

We implemented a subset of Relf’s guidelines as tests. The
remaining guidelines were not adopted because either they
do not reflect recent changes in Java programming practice,
or they are general guidelines of good practice that are diffi-
cult to derive practical proscriptive rules from. For example,
Relf defines the Same Words guideline as prohibiting the
use of identifiers composed of the same words, but in a
different order. Whilst superficially attractive, a rule based on
this guideline prohibits clear names for reciprocal operations
(e.g. htmlToXml and xmlToHtml) and pairs of words that
create semantically distinct identifiers (e.g. indexPage
and pageIndex). Generally, the implementation of each
guideline is apparent from its name, and is described and
illustrated in Table I. However, the precise implementation
of some guidelines requires further explanation:

Capitalisation Anomaly: For identifiers other than con-
stants we test for capitalisation of only the initial letter of
acronyms as prescribed in [19], [20], i.e. only the initial
letter of a component word is capitalised either at word
boundaries, or the beginning of the identifier, if appropriate.

Non-Dictionary Words: We defined a dictionary word
as belonging to the English language, because all the projects
investigated are developed in English. We constructed a
dictionary consisting of some 117,000 words, including



Table I
THE IDENTIFIER NAMING STYLE GUIDELINES APPLIED

Name Description Example of flawed identifier(s)

Capitalisation Anomaly Identifiers should be appropriately capitalised. HTMLEditorKit, pagecounter, fooBAR
Excessive Words Identifier names should be composed of no more than

four words or abbreviations.
floatToRawIntBits()

External Underscores Identifiers should not have either leading or trailing
underscores.

_foo_

Long Identifier Name Identifier names of more than twenty-five characters
should be avoided where possible.

getPolicyQualifiersRejected

Naming Convention Anomaly Identifiers should not consist of non-standard mixes of
upper and lower case characters.

FOO_bar

Non-Dictionary Words Identifier names should be composed of words found in
the dictionary and abbreviations and acronyms that are
more commonly used than the unabbreviated form.

strlen

Number of Words Identifiers should be composed of between two and four
words.

ArrayOutOfBoundsException, name

Numeric Identifier Name Identifiers should not be composed entirely of numeric
words or numeric words and numbers.

FORTY_TWO

Short Identifier Name Identifiers should not consist of fewer than eight char-
acters, with the exception of c, d, e, g, i, in,
inOut, j, k, m, n, o, out, t, x, y, z

name

Type Encoding Type information should not be encoded in identifier
names using Hungarian notation or similar

iCount

inflections and American and Canadian English spelling
variations, using word lists from the SCOWL package up
to size 70, the largest lists consisting of words commonly
found in published dictionaries [22]. We added a further
90 common computing and Java terms, e.g. ‘arity’, ‘host-
name’, ‘symlink’, and ‘throwable’. A separate dictionary of
abbreviations was constructed, using the criterion that “the
abbreviation is much more widely used than the long form,
such as URL or HTML” [20].

A concern is that development teams may use project, or
domain, specific abbreviations and terms, which are not in
our dictionary, yet are well understood by the programmers.
To address the issue we created additional dictionaries for
each application of unrecognised component words that were
used in three, five and ten or more unique identifiers. For
example, an unrecognised word or abbreviation used in
ten or more unique identifiers may be inferred to be a
commonly understood term. The frequencies of three, five
and ten are arbitrary, but may be seen as representative
of the familiarity the development team might have with
a given term. Following the creation of the dictionaries,
each identifier was tested again for compliance to the Non-
Dictionary Words guideline by using a combination of the
main dictionary, the abbreviation dictionary, and each of the
dictionaries of application-specific words and abbreviations.

Number of Words: Relf’s Number of Words guideline
was intended to encourage programmers to create identifiers
between two and four words long. In applying the guideline
as a proscriptive rule both identifiers composed of one word
and those composed of five or more words are categorised
together, which does not allow us to determine the contribu-
tion made by the occurrence of either. The issue is addressed,

in part, by the creation of an Excessive Words flaw, defined
in Table I, which determines identifiers of five or more words
to be flawed.

Short Identifier Name: We updated Relf’s guideline to
include more single letter and short identifiers commonly
used in Java [20], [21] (see Table I).

IV. SOURCE CODE QUALITY

Our objective is to measure source code quality in a way
that reflects the influence of the programmer on source code
and the possible impact on the reader. We used cyclomatic
complexity [8] and the three metric maintainability index [9]
to measure the quality of Java methods. Additionally, Buse
and Weimer’s readability metric (see Section II) was used to
provide assessments of the readability of methods. We also
used FindBugs to analyse the bytecode of each application
for any potential defects.

Cyclomatic complexity provides a ready assessment of the
complexity of a method in terms of the number of possible
execution paths. We acknowledge that cyclomatic complex-
ity is a somewhat controversial metric [23], but believe that
it provides an indication of source code complexity sufficient
for our purposes.

The three metric maintainability index (MI) [9] is given
by:

MI = 171−5.2×ln(HV )−0.23×V (G)−16.2×ln(LOC)

where LOC is the number of lines of code, V(G) is the
cyclomatic complexity and HV is the Halstead Volume [24],
a source code metric determined by the number of opera-
tors and operands used, including identifiers. The Halstead
volume is the product of the Halstead Vocabulary and the
logarithm of the Halstead Length. The Halstead Vocabulary



is the number of unique operators and unique operands, and
the Halstead Length is the sum of the number of operators
and operands. By incorporating the Halstead Vocabulary, the
MI is influenced by the complexity of a unit of source code
in terms of the number of identifiers required to implement
a solution.

FindBugs is a static analysis tool for Java that analyses
bytecode for ‘bug patterns’. The type of defects identified
by the bug patterns range from dereferences of null pointers,
which may halt program execution, to Java specific problems
associated with an incomplete understanding of the Java
language [25]. The latter class of defects include code
constructs likely to increase the maintenance effort and code
constructs that may have unintended side-effects. FindBugs
was used extensively during two days in May 2009 at
Google, and software engineers found some 4,000 significant
issues with Java source code as a result [7]. While we
accept that FindBugs creates false positives, as does any
static analysis tool, we feel that FindBugs’ perspective on
source code quality is suitable for our needs.

V. METHODOLOGY

A. Data Collection

We selected eight established Java open source projects
for investigation, including GUI applications, programmers’
tools, and libraries. The particular projects were chosen to
reduce the potential influence of domain and project-specific
factors in this study. Table II shows the version and number
of methods analysed for each project.

Table II
SOURCE CODE ANALYSED

Project Version Methods

Ant 1.71 9146
Cactus 1.8.0 926
Freemind 0.9.0 Beta 20 4883
Hibernate Core 3.3.1 12309
JasperReports 3.1.2 12349
jEdit 4.3 pre16 5835
JFreeChart 1.0.11 8230
Tomcat 6.0.18 11394

We developed a tool to automate the extraction and
analysis of identifiers from Java source code. Java files were
parsed and identifiers analysed on the parse tree to establish
adherence to the typographical rules for their context, e.g.
method names starting with a lowercase character. Then,
identifiers were extracted and added to a central store, with
information about their location, and divided into hard words
– their component words and abbreviations – using the
conventional Java word boundaries of internal capitalisation
and underscores. Identifiers were then analysed by our tool
for conformance to Relf’s guidelines in Table I, our own
Excessive Words guideline, and the Non-Dictionary Words

guideline where the dictionary is extended by a set of
commonly used hard words.

Where subject applications were found to contain source
code files generated by parser generators, or to incorporate
source code from third party libraries, those files were
ignored to try to ensure only source code written by the
applications’ development teams was analysed.

We collected the primitive Halstead metrics for each
method – counts of operators and operands – by adapting
the standard developed for C by Munson [23] and applying
it to Java in our tool. We also recorded McCabe’s cyclomatic
complexity (V(G)) [8] and LOC for each method, to com-
pute the maintainability index. To create a binary classifier
from the maintainability index we used the threshold of 65,
established by empirical study [9], to identify methods as
‘more-maintainable’ and ‘less-maintainable’.

The readability of source code was evaluated using a
readability metric tool developed by Buse and Weimer [10].
The readability metric follows a bimodal distribution and is
interpreted as binary classifier that identifies source code as
‘more-readable’ or ‘less-readable’

We also applied the cyclomatic complexity metric as a
binary classifier. The popular programming literature often
advocates that programmers take steps to keep the cyclo-
matic complexity of individual methods low. Some texts
suggest refactoring should be considered when cyclomatic
complexity is six or more, and that the cyclomatic complex-
ity of a method should not exceed ten [26]. It is outside the
scope of our study to examine the merits of such practices
or the justification for the chosen thresholds. However, to
create binary classifiers from the cyclomatic complexity
metric, we adopted thresholds of six and ten to represent
methods of moderate and high complexity. This provides
two binary classifiers distinguishing between methods with
low complexity and those with a cyclomatic complexity of
six or more, and between methods with low to moderate
complexity and those with a cyclomatic complexity of ten
or more.

For the purposes of this study we recorded details for
methods that constitute discrete readable units to ensure that
the readability metric assessed source code as the human
reader would see it. Java source code files contain one or
more top-level classes, each of which may contain member
classes. Both types of classes may contain methods. We
recorded as methods, only methods contained either by
top-level classes or by member classes directly contained
by top-level classes. Any local and anonymous classes
contained within those methods were recorded as part of
the containing method and not separately. For example, if a
method contains an anonymous class, the total cyclomatic
complexity for the anonymous class is added to the cyclo-
matic complexity of the containing method.

The Java archive (JAR) files resulting from the compi-
lation of the source code were analysed with FindBugs.



FindBugs employs a heuristic to determine the severity of
the defects it finds and, in its default mode, issues ‘priority
one’ and ‘priority two’ warnings, with priority one deemed
the more serious. Counts of priority one and priority two
warnings were recorded for each method. We used the
default settings for FindBugs with the exception of a filter to
exclude warnings of the use of unconventional capitalisation
of the first letter in class, method and field names, which
would overlap with the findings of our tool. We also filtered
out the ‘Dead Local Store’ warning, which can result from
the actions of the Java compiler. We found that FindBugs
warnings are sparsely distributed in Java methods and used
the presence of a FindBugs warning as a binary classifier.

The identifier naming and metrics data collected for each
Java method was stored in XML files and collated with the
XML output of FindBugs and the readability metric tool,
using a tool we developed. Data extracted from the source
code was matched with classes recorded by FindBugs to
ensure that only identifiers from classes compiled into the
JAR files were analysed. The collated data for each method
was then written to R [27] dataframes for statistical analysis.

B. Statistical Analysis

For each pair of binary classifiers, a contingency table like
Table III was created using R, and the chi-squared (χ2) test
[28] was performed, with the null hypothesis that the binary
classifiers were independent. For Table III the value of χ2

is 81.2, which is statistically significant (p = 2 × 10−19).
For each contingency table, a table of expected values
was derived from the marginal totals to help determine
the nature of any association. In Table III our interest lies
in the top-left cell; if the observed frequency exceeds the
expected frequency then there is a statistically significant
association between the presence of identifiers with the Non-
Dictionary Words flaw and FindBugs Priority Two warnings
in a method. The expected value for the top-left cell is the
product of the sum of the observed values in the lefthand
column and the top row divided by the total population, i.e.
(103+37)×(103+2925)÷(103+37+2925+5165) = 51.5,
which is less than observed frequency of 103. Where any of
the expected frequencies for a contingency table were less
than five, the Fisher exact test [28] was used.

Table III
EXAMPLE CONTINGENCY TABLE

JFreeChart FindBugs Priority Two Warnings
Non-Dictionary Words methods

with
methods
without

methods with 103 2925
methods without 37 5165

In addition to the χ2 tests, we applied a technique used in
medicine to evaluate diagnostic tests to determine whether
the observed phenomena have a practical application. The

same contingency tables used for the χ2 tests were anal-
ysed by treating FindBugs warnings, the maintainability
index, cyclomatic complexity and readability as reference
classifiers. For example, for the contingency table above
(Table III) we take the occurrence of FindBugs priority two
warnings in methods as the reference classifier, and test to
see how well the Non-Dictionary Words flaw performs as a
classifier in comparison.

To evaluate the relative performance of the test classifier,
two quantities are derived from the contingency table: the
sensitivity and the specificity, which represent agreement
between the two classifiers. The sensitivity is the proportion
of the population classified as positive by the reference
classifier that are classified positively by the classifier being
tested. In our example in Table III, the sensitivity is the
proportion of methods for which FindBugs warnings are
issued, that also contain identifiers with the Non-Dictionary
Words flaw; i.e. sensitivity = 103 ÷ (103 + 37) = 0.74.
The specificity is the proportion of population classified
negatively by the reference classifier that are also classified
negatively by the test classifier. In Table III, the specificity is
the proportion of the methods without FindBugs priority two
warnings that have no identifiers with the Non-Dictionary
Words flaw: specificity = 5165÷(2925+5165) = 0.64. An
advantage of this method is that sensitivity and specificity
are independent of the rate of incidence, or prevalence, of
the phenomenon being investigated.

The characteristics of a given test can be illustrated using
receiver operating characteristic (ROC) curves, where the
sensitivity of a test is plotted on the y-axis, against 1 −
specificity (the false positive rate) on the x-axis. The area
under the curve (AUC) (see Figure 1) indicates the efficacy
of the test. A useless test, one that is equivalent to guessing,
is indicated by a diagonal line drawn from the origin to
the top-right corner, representing the equation sensitivity =
1 − specificity , which has an AUC of 0.5. For a test to be
useful the points plotted should lie above and to the left
of the diagonal line. We use the ROC graphs as a means of
visualising the predictive power of the observed associations.

Our example results in a point at (0.36, 0.74), above and
to the left of the diagonal, meaning that, in the case of
JFreeChart, using the Non-Dictionary Word flaw as a binary
classifier is a better than chance method of predicting the
presence or absence of FindBugs priority two warnings. The
predictive power of a result is related to its perpendicular
distance from the diagonal line, and is equal to the area under
a line drawn from the origin to the point representing the
result and from the result to the point (1, 1). In our example,
the predictive power is 0.69, which means that the Non-
Dictionary Word flaw has a 0.69 probability of indicating
whether or not a method contains a FindBugs Priority two
warning in JFreeChart.

The majority of methods in JFreeChart are correctly
classified by the test classifier and are grouped in the top-



left and bottom-right cells of Table III. As we will see in
the next section, especially for Cactus, it is possible for
the members of a population to be grouped in these cells,
resulting in values of sensitivity and specificity that give a
useful probability, without the distribution in the contingency
table giving a statistically significant result for either the χ2

or Fisher exact tests.

VI. RESULTS

In Tables IV, V and VI statistically significant associations
between the flawed identifiers and each of the source code
quality measures are represented in black where p < 0.001
and dark grey where p < 0.05. Where the trend of associa-
tion was negative, i.e. the presence of the particular identifier
flaw is associated with better quality source code, the cell
is marked with a white dash. White cells represent the lack
of a statistically significant association (i.e. p > 0.05), and
asterisks indicate where the particular identifier flaw was
not found. The digits contained in selected cells show the
probability with which the identifier flaw, when applied as
a binary classifier, correctly predicts the quality of methods.
Only probabilities of 0.55, marginally better than guessing,
or greater, have been included in the tables. The probabilities
not shown are largely close to 0.5, and only less than 0.5
for some of the negative associations.

Each table lists three further categories labelled ‘Extended
3’, ‘Extended 5’ and ‘Extended 10’. The results for the
three ‘Extended’ flaws should be compared with those for
the Non-Dictionary Words flaw to determine the influence
of application-specific words and abbreviations on the re-
lationship between the linguistic content of identifiers and
FindBugs warnings. The bottom line of Table IV shows
the relationships between methods classified as less-readable
by the readability metric and FindBugs warnings. Where
we found associations, our results largely confirm the con-
nection between readability and FindBugs warnings found
by Buse and Weimer [10]. Indeed, our results show that
the connection between readability and FindBugs warnings
extends to projects such as Ant and Freemind, which Buse
and Weimer did not investigate. However, our work differs
in the statistical methods used, the versions of projects
investigated, and because we discriminated between priority
one and two warnings, which they did not.

Table IV shows the associations between identifier flaws
and FindBugs priority one and priority two warnings in
the methods of each project. The statistical associations are
largely confined to particular identifier flaws indicating the
general cross-project trends. However, there are also appar-
ent project-specific relationships as illustrated by Cactus and
jEdit for both priority one warnings, and Cactus, Hibernate
and JasperReports for priority two warnings.

While Cactus and jEdit have just one statistically signif-
icant association with priority one warnings between them,
we found useful predictive qualities in the relationships for

some identifier flaws. The probabilities given in the left hand
side of Table IV emphasise the cross-project nature of the
relationships between the Extended, Non-Dictionary Words,
Number of Words and Short Identifier flaws. The relation-
ships for the priority two warnings are less clear. There are
hints of similar, general, cross-project relationships; how-
ever, the project-specific relationships are more apparent.
Cactus, again, has few statistical associations, but some
relationships have probabilities greater than 0.55. Hibernate
and JasperReports both have negative statistical associations.
Hibernate has a few relationships with probabilities greater
than 0.55, whereas JasperReports has none.

The relationships for the Non-Dictionary Words flaw and
priority two warnings are plotted in Figure 1. While six
points are above the diagonal line and illustrate the utility of
the Non-Dictionary Words flaw as a light-weight classifier,
there are two points below the line. The point for Hibernate,
where no statistically significant association was found, is
closest to the line and the other is for JasperReports which
has a negative association.

Figure 1. ROC Plot for the Non-Dictionary Words Flaw

Tables V and VI show much more consistent relation-
ships for identifier flaws with complexity, maintainability
and readability. There remain, however, hints of project-
specific relationships, which are most apparent for Cactus.
The predictive probability associated with each relationship
illustrates the utility of the identifier flaws as light-weight
classifiers for source code quality. The relationships between
the Non-Dictionary Words flaw and complexity and read-
ability are plotted in Figure 1.

A. Threats to Validity

Construct Validity: The definition of the Short Identifier
Name guideline is much more restrictive than the Java
programming conventions [20], [21] and common practice.
Consequently the number of identifiers categorised as flawed



Table IV
ASSOCIATIONS BETWEEN NAMING FLAWS AND PRIORITY ONE AND TWO WARNINGS

Priority One Warnings Priority Two Warnings

A
nt

C
ac

tu
s

Fr
ee

m
in

d

H
ib

er
na

te

Ja
sp

er
R

ep
or

ts

jE
di

t

JF
re

eC
ha

rt

To
m

ca
t

A
nt

C
ac

tu
s

Fr
ee

m
in

d

H
ib

er
na

te

Ja
sp

er
R

ep
or

ts

jE
di

t

JF
re

eC
ha

rt

To
m

ca
t

Capitalisation Anomaly .71 .63 .59 .56 .62 .62 – – .57
Excessive Words .55 .55 .55 .58 –
External Underscores * * * * * * * *
Long Identifier .59 .59 .57 –
Naming Convention Anomaly
Number of Words .57 .61 .62 .62 .64 .56 .59 .55 .56 .59 – .55 .55
Numeric Identifier .55 * * * * * * * *
Short Identifier Name .59 .64 .63 .65 .66 .61 .59 .56 .58 .62 – .56 .57
Type Encoding * * * * * *
Non-Dictionary Words .72 .92 .71 .70 .66 .60 .81 .57 .60 .64 .62 – .63 .69 .59

Extended 3 .71 .94 .66 .81 .55 .64 .66 .59 .63 .59
Extended 5 .76 .94 .66 .80 .57 .88 .56 .64 .65 .64 – .63 .72 .59
Extended 10 .72 .92 .65 .75 .67 .87 .55 .63 .64 .64 – .61 .72 .61

Less-readable .82 .74 .72 – .65 .72 .60 .67 .67 .67 – .66 .68

p < 0.001 p < 0.05 p >= 0.05 * No flaw

Table V
ASSOCIATIONS BETWEEN NAMING FLAWS AND CYCLOMATIC COMPLEXITY

Cyclomatic Complexity >= 6 Cyclomatic Complexity >= 10

A
nt

C
ac

tu
s

Fr
ee

m
in

d

H
ib

er
na

te

Ja
sp

er
R

ep
or

ts

jE
di

t

JF
re

eC
ha

rt

To
m

ca
t

A
nt

C
ac

tu
s

Fr
ee

m
in

d

H
ib

er
na

te

Ja
sp

er
R

ep
or

ts

jE
di

t

JF
re

eC
ha

rt

To
m

ca
t

Capitalisation Anomaly .68 .68 .65 .65 .65 .61 .68 .73 .67 .72 .63 .64 .66 .61 .73 .75
Excessive Words .58 .62 .55 .58 .55 .55 .58 .65 .58 .60
External Underscores * * * * * * * *
Long Identifier .56 .56 .64 .62 .57 .55 .56 .57 .68 .66 .58 .57
Naming Convention Anomaly .55
Number of Words .56 .62 .57 .61 .65 .59 .60 .55 .61 .57 .60 .64 .58 .59
Numeric Identifier * * * * * * * *
Short Identifier Name .58 .65 .58 .64 .64 .55 .61 .61 .63 .65 .57 .62 .62 .55 .60 .62
Type Encoding * * * * * *
Non-Dictionary Words .70 .65 .68 .75 .69 .64 .78 .74 .67 .70 .67 .74 .70 .64 .78 .76

Extended 3 .69 .65 .63 .69 .65 .62 .69 .72 .69 .70 .61 .73 .68 .64 .75 .75
Extended 5 .71 .64 .65 .72 .69 .64 .80 .73 .70 .69 .65 .75 .73 .66 .82 .76
Extended 10 .71 .65 .66 .74 .70 .65 .80 .74 .70 .70 .66 .76 .74 .66 .81 .77

p < 0.001 p < 0.05 p >= 0.05 * No flaw

may be inflated, and accordingly the observed associations
may need to be treated with caution.

False positives are inevitable with static analysis tools
such as FindBugs. The false positive rate for each application
cannot be established without manual inspection of the
source code in the proximity of each warning, which is
outside the scope of the current study.

External Validity: The apparently project-specific in-
fluences on the relationships between flawed identifiers and
FindBugs warnings in Table IV, suggest that, though general
principles may be derived from our findings, caution is nec-
essary when applying them to other projects. Some project-
specific variation is apparent even in the more consistent
findings shown in Tables V and VI, again suggesting that



Table VI
ASSOCIATIONS BETWEEN NAMING FLAWS AND READABILITY AND THE MAINTAINABILITY INDEX

Less-Readable Less-Maintainable

A
nt

C
ac

tu
s

Fr
ee

m
in

d

H
ib

er
na

te

Ja
sp

er
R

ep
or

ts

jE
di

t

JF
re

eC
ha

rt

To
m

ca
t

A
nt

C
ac

tu
s

Fr
ee

m
in

d

H
ib

er
na

te

Ja
sp

er
R

ep
or

ts

jE
di

t

JF
re

eC
ha

rt

To
m

ca
t

Capitalisation Anomaly .62 .55 .61 .60 .62 .62 .63 .66 .78 .78 .76 .67 .67 .64 .81 .77
Excessive Words .59 .58 .61 .57 .59 .58 .67 .68 .62 .57 .63 .55
External Underscores * * * * * * * .57 *
Long Identifier .56 .58 .60 .58 .56 .56 .57 .68 .67 .73 .71 .57 .61 .58
Naming Convention Anomaly .55 .57 .56 .55
Number of Words .56 .60 .55 .57 .61 .62 .62 .65 .56 .59 .60
Numeric Identifier * * * * * * * *
Short Identifier Name .57 .59 .65 .62 .65 .66 .56 .61 .63
Type Encoding * * * * * *
Non-Dictionary Words .65 .56 .61 .66 .65 .65 .62 .68 .76 .77 .79 .82 .72 .72 .80 .78

Extended 3 .62 .56 .58 .62 .60 .65 .81 .76 .69 .83 .72 .71 .84 .80
Extended 5 .64 .57 .60 .63 .63 .66 .82 .76 .75 .85 .78 .74 .85 .80
Extended 10 .65 .56 .58 .63 .65 .63 .68 .80 .77 .77 .85 .80 .74 .84 .80

p < 0.001 p < 0.05 p >= 0.05 * No flaw

care may be required when applying our findings.

VII. DISCUSSION

The statistically significant associations found for Find-
Bugs priority one and two warnings contain common fea-
tures (Table IV). There appear to be general, cross-project
associations for some identifier flaws, but the distribution of
associations appears to be largely project specific. Cactus
is the most extreme example with statistically significant
associations found with the χ2 and Fisher exact tests only
between the extended dictionaries and priority two warn-
ings. jEdit has only one statistically significant association
with priority one warnings, but more with priority two.
The negative associations in Table IV (marked with white
dashes) emphasise the application-specific nature of some
relationships. That the negative associations are positive for
the more serious priority one warnings, suggests that the
developers in both projects face more complex issues with
identifiers than we can explain without further investigation.

The negative associations for the Excessive Words and
Long Identifier flaws for JasperReports may be connected
through the widespread use of longer identifier names, with
which the development team have become familiar. The
negative association for the Non-Dictionary Word flaw is
not found with the lower frequency extended dictionaries
and becomes a positive association with the ‘Extended 10’
flaw, indicating the importance of a widely used application-
specific terms in JasperReports. The use of application-
specific terms is consistent with the commercialised nature
of JasperReports and the finding of Lawrie et al. [4] that
domain-specific natural language and abbreviations are more

common in identifiers found in commercial source code than
in open source.

In previous work [6], conducted at the class level on
the same projects, we found fewer relationships between
identifier flaws and priority one warnings, and more general
relationships with priority two warnings. At the method level
a proportion of FindBugs warnings, which apply only to
classes, are eliminated from the study. The finer-grained
analysis could be the sole explanatory factor for the differ-
ence between the two sets of results for FindBugs warnings.
However, it is possible that FindBugs warnings applicable
at the class level alone, may have been a source of noise.

The evaluation of the predictive quality of each rela-
tionship offers further insights. Some relationships, despite
the statistical independence of the two classifiers, may be
applied as heuristics. The Non-Dictionary Word flaw for
Cactus, for example, could be applied as reasonably reliable
classifier of source code for FindBugs priority one warnings,
with a probability of > 0.9. In general, the Non-Dictionary
Words flaw is a fair to good classifier for FindBugs warn-
ings; however, it is not perfect. The Number of Words and
Short Identifiers flaws are much weaker classifiers, with
probabilities largely between 0.55 and 0.60, but are still
better than guessing.

Tables V and VI show largely consistent associations
between the presence of identifier flaws and lower quality
source code. In both cases the Capitalisation Anomaly and
Non-Dictionary Words flaws provide the stronger classifiers.
For complexity and maintainability the Excessive Words,
Long Identifier Name, Number of Words, and Short Identi-
fier Name flaws also perform better than chance. However,



only the Capitalisation Anomaly and Non-Dictionary Words
flaws have consistent relationships with readability.

Identifier length is the only characteristic of individual
identifiers that is a component of the readability metric.
However, the readability metric developers found that iden-
tifier length was not a significant influence on the read-
ability of source code [10]. Our findings, shown in the
left hand side of Table VI, suggest the human subjects,
against whose judgements of source code readability the
metric was trained, were influenced by the conformance of
identifier names to familiar typographical conventions, and
the use of dictionary words and well-known abbreviations.
Further, our findings suggest that longer identifiers do have
a negative influence on readability, as evidenced by the
statistical associations found for the Excessive Words and
Long Identifier flaws in Table VI.

The ROC plots for the Non-Dictionary Words flaw in
Figure 1 illustrate that the flaw may be applied to predict
lower quality source code. Tables V and VI record proba-
bilities generally greater than 0.6 and sometimes as high as
0.8, showing that the Non-Dictionary Words flaw provides
a usable, light-weight classifier for the complexity, main-
tainability and readability of source code. The probabilities
for other identifier flaws given in Tables V and VI show
similar predictive values for identifying less-readable, less
maintainable and more complex source code. However, the
probabilities given in Table IV show that identifier flaws may
not be reliably used to predict FindBugs warnings, because
of the variation between projects. We previously reported
[6] that the Cactus project requires the use of static style
checking before code is committed to version control, which
influences identifier quality. Also, the commercialised nature
of the Hibernate and JasperReports projects may influence
the composition of their identifiers [4]. It may be that there
are relevant project or domain specific factors into which
our current study cannot offer any insights. Boogerd and
Moonen [16], [17] attributed many of the differences in their
studies to ‘domain factors’. As we deliberately chose not to
include projects from identical domains, our results cannot
offer clear conclusions on this question.

VIII. CONCLUSIONS

The literature establishes the importance of identifier
naming to program comprehension [2], [5]. However, there
have been few investigations of the relationship between
identifier name quality and source code quality [6], [16]. The
contribution of this study is to provide a deeper understand-
ing of this important but largely unexplored relationship.

Our investigation was conducted at a finer-granularity than
previous work [6], using a variety of source code quality
measures, to gain a richer perspective and discriminate
among potentially confounding factors. We evaluated the
quality of identifier names using accepted naming conven-
tions validated by empirical study [13], and the natural lan-

guage content of identifiers, including Java- and application-
specific terms.

We evaluated source code quality using four perspec-
tives: the identification of potentially problematic code with
FindBugs, the three-metric maintainability index, a human-
trained readability metric, and cyclomatic complexity. We
used the χ2 and Fisher exact tests to test the indepen-
dence of poor quality identifiers and more-complex, less-
maintainable, and less-readable source code. We found,
generally, that poor quality identifiers are associated with
lower quality source code. To establish whether the observed
associations might have a practical application, we applied
a technique used in medicine to evaluate diagnostic tests.
We found that some associations occurred with sufficient
consistency that they could be applied in a practical setting
to identify areas of source code as candidates for intelligent
review. We also found that some relationships not found to
be statistically significant with the χ2 and Fisher exact tests
were potentially useful classifiers.

We investigated 8 open source Java applications using
10 identifier flaws, and the 3 extended dictionaries, and 6
indicators of source code quality. From our analysis of the
624 relationships, the following lessons for researchers and
developers emerge:

• poor quality identifier names are strongly asso-
ciated with more-complex, less-readable and less-
maintainable source code;

• the use of natural language and recognised abbrevia-
tions in identifier names may be applied as a light-
weight classifier for source code quality;

• the length of identifiers, both in terms of characters and
number of component words, can be applied as a light-
weight classifier for complexity and maintainability;

• poor quality identifier names are associated with Find-
Bugs warnings; however, the relationships are complex
and appear to be application-specific; and

• the only negative associations found were in com-
mercialised projects, indicating there may be relevant
differences between open source and commercial code.

Previous work has provided limited perspectives on the re-
lationships between identifier naming, readability and source
code quality. Identifiers formed a small part of Boogerd
and Moonen’s [17] study of programming conventions and
software quality. Buse and Weimer [10] found a relationship
between source code readability and FindBugs warnings,
and we [6] found associations between identifier quality and
FindBugs warnings. This paper is the first to associate multi-
ple naming and source code quality factors at a finer level of
granularity. By working at the level of Java methods we were
able to investigate the relationships in detail and to provide
practical, light-weight and low-cost classifiers for identifying
source code which is potentially less-maintainable, less-
readable, more-complex and more fault-prone. Further work



is required to expand on our findings through the use of
other source code quality metrics, including bug reports,
the inclusion of semantic information in the measurement
of identifier quality, and the investigation of commercial,
closed source projects.

ACKNOWLEDGEMENTS

We thank Álvaro Faria, coordinator of the Statistics Advi-
sory Service at The Open University, for his help in choosing
the χ2 statistical method. We also thank Ray Buse and
Westley Weimer of the University of Virginia for allowing
us to use their readability metric tool. Finally, we thank the
anonymous reviewers for their thoughtful comments, which
have helped improve this paper.

REFERENCES

[1] F. Deissenboeck and M. Pizka, “Concise and consistent
naming,” Software Quality Journal, vol. 14, no. 3, pp. 261–
282, Sep 2006.

[2] V. Rajlich and N. Wilde, “The role of concepts in program
comprehension,” in Proc. 10th Int’l Workshop on Program
Comprehension. IEEE, 2002, pp. 271–278.

[3] E. W. Høst and B. M. Østvold, “The programmer’s lexicon,
volume 1: the verbs,” in Proc. Int’l Working Conf. on Source
Code Analysis and Manipulation. IEEE, October 2007, pp.
193–202.

[4] D. Lawrie, H. Feild, and D. Binkley, “Quantifying identifier
quality: an analysis of trends,” Empirical Software Engineer-
ing, vol. 12, no. 4, pp. 359–388, 2007.

[5] D. Lawrie, C. Morrell, H. Feild, and D. Binkley, “What’s in
a name? A study of identifiers,” in 14th IEEE Int’l Conf. on
Program Comprehension. IEEE, 2006, pp. 3–12.

[6] S. Butler, M. Wermelinger, Y. Yu, and H. Sharp, “Relating
identifier naming flaws and code quality: an empirical study,”
in Proc. of the Working Conf. on Reverse Engineering. IEEE,
2009, pp. 31–35.

[7] FindBugs, “Find Bugs in Java programs,” http://findbugs.
sourceforge.net/, 2008.

[8] T. J. McCabe, “A complexity measure,” Transactions on
Software Engineering, vol. SE-2, no. 4, pp. 308–320, Dec
1976.

[9] K. D. Welker, P. W. Oman, and G. G. Atkinson, “Develop-
ment and application of an automated source code maintain-
ability index,” Journal of Software Maintenance, vol. 9, no. 3,
pp. 127–159, 1997.

[10] R. P. Buse and W. R. Weimer, “A metric for software
readability,” in Proc. Int’l Symp. on Software Testing and
Analysis. ACM, 2008, pp. 121–130.

[11] G. Antoniol, Y.-G. Gueheneuc, E. Merlo, and P. Tonella,
“Mining the lexicon used by programmers during sofware
[sic] evolution,” in Proc. of Int’l Conf. on Software Mainte-
nance. IEEE, Oct. 2007, pp. 14–23.

[12] B. Liblit, A. Begel, and E. Sweetser, “Cognitive perspectives
on the role of naming in computer programs,” in Proc. 18th
Annual Psychology of Programming Workshop. Psychology
of Programming Interest Group, 2006.

[13] P. A. Relf, “Achieving software quality through identifier
names,” 2004, presented at Qualcon 2004 http://www.aoq.asn.
au/conference2004/conference.html.

[14] ——, “Tool assisted identifier naming for improved software
readability: an empirical study,” in Int’l Symp. on Empirical
Software Engineering. IEEE, 2005, pp. 53–62.

[15] S. L. Abebe, S. Haiduc, P. Tonella, and A. Marcus, “Lexicon
bad smells in software,” in Proc. Working Conf. on Reverse
Engineering. IEEE, 2009, pp. 95–99.

[16] C. Boogerd and L. Moonen, “Assessing the value of coding
standards: An emprical study,” in Proc. Int’l Conf. on Soft-
ware Maintenance. IEEE, 2008, pp. 277–286.

[17] ——, “Evaluating the relation between coding standard viola-
tions and faults within and across software versions,” in Proc.
of the Int’l Working Conf. on Mining Software Repositories.
IEEE, 2009, pp. 41–50.

[18] MIRA Ltd, MISRA-C:2004 Guidelines for the use of the
C language in Critical Systems, MIRA Std., Oct 2004.
[Online]. Available: www.misra.org.uk

[19] J. Gosling, B. Joy, G. Steele, and G. Bracha, The Java
language specification, 3rd ed. Addison-Wesley, 2005.

[20] Sun Microsystems, “Code conventions for the Java program-
ming language,” http://java.sun.com/docs/codeconv, 1999.

[21] A. Vermeulen, S. W. Ambler, G. Bumgardner, E. Metz,
T. Misfeldt, J. Shur, and P. Thompson, The Elements of Java
Style. Cambridge University Press, 2000.

[22] K. Atkinson, “SCOWL readme,” http://wordlist.sourceforge.
net/scowl-readme, 2004.

[23] J. C. Munson, Software Engineering Measurement. Auer-
bach, 2003.

[24] M. H. Halstead, Elements of Software Science. Elsevier,
1977.

[25] N. Ayewah, W. Pugh, J. D. Morgenthaler, J. Penix, and
Y. Zhou, “Evaluating static analysis defect warnings on
production software,” in Proc. ACM SIGPLAN-SIGSOFT
Workshop on Program Analysis for Software Tools and En-
gineering. ACM, 2007, pp. 1–8.

[26] S. McConnell, Code Complete: A practical handbook of
software construction, 2nd ed. Microsoft Press, 2004.

[27] R Development Core Team, R: A Language and Environment
for Statistical Computing, R Foundation for Statistical
Computing, 2008, ISBN 3-900051-07-0. [Online]. Available:
http://www.R-project.org

[28] M. J. Crawley, Statistics: an introduction using R. John
Wiley, 2005.


