The Open UniversitySkip to content
 

Three-dimensional ultrastructural and immunohistochemical study of immature neurons in the subgranular zone of the rat dentate gyrus

Popov, V. I.; Kraev, I. V.; Banks, D.; Davies, H. A.; Morenkov, E. D.; Stewart, M. G. and Fesenko, E. E. (2009). Three-dimensional ultrastructural and immunohistochemical study of immature neurons in the subgranular zone of the rat dentate gyrus. Biophysics, 54(4) pp. 497–512.

Full text available as:
Full text not publicly available
Due to copyright restrictions, this file is not available for public download
DOI (Digital Object Identifier) Link: http://doi.org/10.1134/S0006350909040174
Google Scholar: Look up in Google Scholar

Abstract

The present study is devoted to three dimensional ultrastructural organization of mitotically dividing immature neurons in dentate gyrus using biophysical approaches. In adult vertebrate brain, cell proliferation persists throughout life mainly in dentate gyrus of the hippocampus (DG) and olfactory bulb. Neurogenesis has been demonstrated using tagged thymidine analogues incorporated into the S phase of the cell cycle, but these may also detect repaired DNA in postmitotic neurons. Recent retroviral labelling has shown that neuronal progenitors/neuroblasts divide and produce functional neurons. Providing ultrastructural evidence of mitotically active cells has proven problematical, not only because of technical issues of identifying dividing cells at electron microscope level, but also because it is difficult to demonstrate unequivocally that neurons identified in the electron microscope are really post mitotic. However by characterising post mitotic cells labelled with BrdU and doublecortin and comparing these with post mitotic cells reconstructed in 3 dimensions from ultrathin serial sections, we have been able to illustrate individual mitotic elements and phases of cells within the GC layer of adult rat dentate gyrus. Here we show dividing cells in metaphase within clusters of immature GCs in subgranular zone (SGZ). These reconstructions provide ultrastructural confirmation that cells expressing doublecortin (DCX), a microtubule associated protein expressed in migrating neurons, localize as clusters in the subgranular zone (SGZ) of dentate gyrus (DG) in the hippocampus during all animal life. Such DG cells with clear synaptic specializations, somatic spines and basal dendrites are exclusive to immature GC that appear to reenter the cell cycle, suggesting the possibility that newly generated neurons within the DG might arise not only from precursors, but also from clusters of immature GC.

Item Type: Journal Article
Copyright Holders: 2009 Pleiades Publishing Inc.
ISSN: 1555-6654
Project Funding Details:
Funded Project NameProject IDFunding Body
PromemoriaNot SetEU FP6
Not Set08-04-00049Russian Foundation for Basic Research
Not Set09-01-12106-ofi_mRussian Foundation for Basic Research
Not SetRF 2.1.1-3876Ministry of Education and Science
Not SetMK 424.2007.4Ministry of Education and Science
Keywords: BrdU; cell proliferation; doublecortin; granule cells; hippocampus; metaphase; serial ultrathin sectioning; somatic spines
Academic Unit/Department: Science > Life, Health and Chemical Sciences
Science
Interdisciplinary Research Centre: Biomedical Research Network (BRN)
Centre for Research in Computing (CRC)
Item ID: 18990
Depositing User: Users 9 not found.
Date Deposited: 17 Nov 2009 09:15
Last Modified: 25 Feb 2016 08:50
URI: http://oro.open.ac.uk/id/eprint/18990
Share this page:

Altmetrics

Scopus Citations

▼ Automated document suggestions from open access sources

Actions (login may be required)

Policies | Disclaimer

© The Open University   + 44 (0)870 333 4340   general-enquiries@open.ac.uk