The Open UniversitySkip to content
 

A versatile 3D culture model facilitates monitoring of astrocytes undergoing reactive gliosis

East, Emma; Golding, Jonathan P. and Phillips, James B. (2009). A versatile 3D culture model facilitates monitoring of astrocytes undergoing reactive gliosis. Journal of Tissue Engineering and Regenerative Medicine, 3(8) pp. 634–646.

DOI (Digital Object Identifier) Link: http://dx.doi.org/10.1002/term.209
Google Scholar: Look up in Google Scholar

Abstract

A major impediment to CNS repair is the glial scar, which forms following damage and is composed mainly of ramified, 'reactive' astrocytes that inhibit neuronal regrowth. The transition of astrocytes into this reactive phenotype (reactive gliosis) is a potential therapeutic target, but glial scar formation has proved difficult to study in monolayer cultures because they induce constitutive astrocyte activation. Here we demonstrate a 3D collagen gel system in which primary rat astrocytes were maintained in a persistently less reactive state than comparable cells in monolayer, resembling their status in the undamaged CNS. Reactivity, proliferation and viability were monitored and quantified using confocal, fluorescence and time-lapse microscopy, 3D image analysis, RT-PCR and ELISA. To assess the potential of this system as a model of reactive gliosis, astrocytes in 3D were activated with TGFbeta1 to a ramified, reactive phenotype (elevated GFAP, Aquaporin 4, CSPG, Vimentin and IL-6 secretion). This provides a versatile system in which astrocytes can be maintained in a resting state, then be triggered to undergo reactive gliosis, enabling real-time monitoring and quantitative analysis throughout and providing a powerful new tool for research into CNS damage and repair.

Item Type: Journal Article
Copyright Holders: 2009 John Wiley & Sons, Ltd
ISSN: 1932-6254
Project Funding Details:
Funded Project NameProject IDFunding Body
Not SetNot SetWellcome Trust [080309/Z/06/Z]
Academic Unit/Department: Science > Life, Health and Chemical Sciences
Science
Interdisciplinary Research Centre: Biomedical Research Network (BRN)
Item ID: 18708
Depositing User: James Phillips
Date Deposited: 21 Oct 2009 12:42
Last Modified: 07 Mar 2014 13:51
URI: http://oro.open.ac.uk/id/eprint/18708
Share this page:

Actions (login may be required)

View Item
Report issue / request change

Policies | Disclaimer

© The Open University   + 44 (0)870 333 4340   general-enquiries@open.ac.uk