Copy the page URI to the clipboard
Blasius, Jörg and Gower, John C.
(2005).
DOI: https://doi.org/10.1007/s11135-005-3006-0
Abstract
Gower and Blasius (Quality and Quantity, 39, 2005) proposed the notion of multivariate predictability as a measure of goodness-of-fit in data reduction techniques which is useful for visualizing and screening data. For quantitative variables this leads to the usual sums-of-squares and variance accounted for criteria. For categorical variables, and in particular for ordered categorical variables, they showed how to predict the levels of all variables associated with every point (case). The proportion of predictions which agree with the true category-levels gives the measure of fit. The ideas are very general; as an illustration they used nonlinear principal components analysis. An example of the method is described in this paper using data drawn from 23 countries participating in the International Social Survey Program (1995), paying special attention to two sets of variables concerned with Regional and National Identity. It turns out that the predictability criterion suggests that the fits are rather better than is indicated by "percentage of variance accounted for".
Viewing alternatives
Metrics
Public Attention
Altmetrics from AltmetricNumber of Citations
Citations from DimensionsItem Actions
Export
About
- Item ORO ID
- 18180
- Item Type
- Journal Item
- ISSN
- 0033-5177
- Keywords
- biplot; international comparison; large scale data analysis; national and regional identity; nonlinear principal components analysis; prediction
- Academic Unit or School
-
Faculty of Science, Technology, Engineering and Mathematics (STEM) > Mathematics and Statistics
Faculty of Science, Technology, Engineering and Mathematics (STEM) - Copyright Holders
- © 2005 Springer
- Depositing User
- Colin Smith