The Open UniversitySkip to content
 

In situ multi-frequency measurements of magnetic susceptibility as an indicator of planetary regolith maturity

Bentley, Mark S.; Ball, Andrew J.; Potter, David K.; Wright, Ian P. and Zarnecki, John C. (2009). In situ multi-frequency measurements of magnetic susceptibility as an indicator of planetary regolith maturity. Planetary and Space Science, 57(12) pp. 1491–1499.

Full text available as:
[img]
Preview
PDF (Accepted Manuscript) - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
Download (254Kb)
DOI (Digital Object Identifier) Link: http://dx.doi.org/10.1016/j.pss.2009.07.013
Google Scholar: Look up in Google Scholar

Abstract

Space weathering is now generally accepted to modify the optical and magnetic properties of airless planetary regoliths such as those on the Moon and Mercury. Under micrometeorite and ion bombardment, ferrous iron in such surfaces is reduced to metallic iron spheres, found in amorphous coatings on almost all exposed regolith grains. The size and number distribution of these particles and their location in the regolith all determine the nature and extent of the optical and magnetic changes. These parameters in turn reflect the formation mechanisms, temperatures, and durations involved in the evolution of the regolith. Studying them in situ is of intrinsic value to understanding the weathering process, and useful for determining the maturity of the regolith and providing supporting data for interpreting remotely sensed mineralogy. Fine-grained metallic iron has a number of properties that make it amenable to magnetic techniques, of which magnetic susceptibility is the simplest and most robust. The magnetic properties of the lunar regolith and laboratory regolith analogues are therefore reviewed and the theoretical basis for the frequency dependence of magnetic susceptibility presented. Proposed here is then an instrument concept using multi-frequency measurements of magnetic susceptibility to confirm the presence of fine grained magnetic material and attempt to infer its quantity and size distribution. Such an instrument would be invaluable on a future mission to an asteroid, the Moon, Mercury or other airless rocky Solar System body.

Item Type: Journal Article
Copyright Holders: 2009 Elsevier Ltd
ISSN: 0032-0633
Keywords: magnetic susceptibility; space weathering; planetary regolith; maturity
Academic Unit/Department: Science > Physical Sciences
Interdisciplinary Research Centre: Centre for Earth, Planetary, Space and Astronomical Research (CEPSAR)
Item ID: 17879
Depositing User: Colin Smith
Date Deposited: 05 Aug 2009 10:41
Last Modified: 22 Nov 2012 08:22
URI: http://oro.open.ac.uk/id/eprint/17879
Share this page:

Altmetrics

Scopus Citations

Actions (login may be required)

View Item
Report issue / request change

Policies | Disclaimer

© The Open University   + 44 (0)870 333 4340   general-enquiries@open.ac.uk