Regenerative capacity of cultured neurons following photodynamic therapy in a 3D collagen gel culture system

Conference Item

How to cite:


For guidance on citations see FAQs

© 2009 Unknown
Version: Accepted Manuscript
Link(s) to article on publisher's website:
http://www.ecmjournal.org/journal/supplements/vol018supp02/vol018supp02.htm

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies page.

oro.open.ac.uk
Regenerative Capacity of Cultured Neurons Following Photodynamic Therapy in a 3D Collagen Gel Culture System

K E Wright and J B Phillips

Life Sciences Department, The Open University, Milton Keynes, U.K.

INTRODUCTION: Photodynamic therapy (PDT) is a promising treatment modality for cancer which involves administration of a photosensitising agent that can be activated subsequently within a patient’s cells, resulting in cell death from oxidative damage. Peripheral nerve sparing has been reported following PDT with the photosensitiser meta-(tetra-hydroxyphenyl) chlorin (mTHPC) [1 & 2]. Dorsal root ganglia (DRG) neurons have been shown to be relatively insensitive to mTHPC-PDT doses that killed other cell types in a 3D collagen culture system [3]. The aim here was to determine the extent to which ‘surviving’ neurons were able to sprout neurites as an indication of functional recovery following PDT.

METHODS: Mixed cultures of dissociated neurons and satellite glia were prepared from the DRGs of 250-300 g rats and maintained within thin 3D collagen gels for 4 days. Cultures were exposed to 4 and 10 µg/ml mTHPC for 4 h, then illuminated at a fluence rate of 1.6 mW/cm² for 10 min, giving a total light dose of 1 J/cm² [3]. After a latency period of 24 h, during which time a substantial number of satellite glia died, surviving neurons were extracted by digesting gels with 0.125 % collagenase for 30 min. PDT treated cells were collected and combined with untreated satellite glia then further cultured in monolayer on 20 µg/ml PLL-coated 19 mm diameter coverslips for 2 days. The ratio of βIII-tubulin immunoreactive neurons with or without new neurite growth, and the lengths of neurites were assessed using fluorescence microscopy and digital image analysis.

RESULTS: Fig 1 shows the proportion of neuronal cell bodies that showed neurite growth. Neurons treated with 3 & 4 µg/ml mTHPC-PDT showed no difference to untreated and light only controls in their ability to produce neurites. Fig 2 shows length of neurite outgrowth was not significantly different between control and light only and 3 & 4 µg/ml mTHPC-PDT treated cells. Only 10 µg/ml mTHPC-PDT treated cells showed significantly reduced neurite lengths in comparison to light only control (* P < 0.05; 1-way ANOVA with Dunnett’s post test).

DISCUSSION & CONCLUSIONS: The ability of neurons treated with mTHPC-PDT to extend neurites in this model system acts as an indication that they remain functionally active in terms of regenerative capacity. This is an important finding since identifying PDT conditions that enable neurons to survive while tumor cells are destroyed may be of particular benefit for treating cancers within or adjacent to the nervous system.


ACKNOWLEDGEMENTS: With thanks to the BRU staff. Funded by the Open University.