Observations on the relationship between the Antarctic coastal diatoms *Thalassiosira antarctica Comber* and *Porosira glacialis* (Grunow) Jørgensen and sea ice concentrations during the Late Quaternary

How to cite:

Pike, Jennifer; Crosta, Xavier; Maddison, Eleanor J.; Stickley, Catherine E.; Denis, Delphine; Barbara, Loïc and Renssen, Hans (2009). Observations on the relationship between the Antarctic coastal diatoms *Thalassiosira antarctica Comber* and *Porosira glacialis* (Grunow) Jørgensen and sea ice concentrations during the Late Quaternary. Marine Micropaleontology, 73(1-2) pp. 14–25.

For guidance on citations see FAQs.
Accepted Manuscript

Observations on the relationship between the Antarctic coastal diatoms Thalassiosira antarctica Comber and Porosira glacialis (Grunow) Jørgensen and sea ice concentrations during the Late Quaternary

Jennifer Pike, Xavier Crosta, Eleanor J. Maddison, Catherine E. Stickley, Delphine Denis, Loïc Barbara, Hans Renssen

PII: S0377-8398(09)00072-3
DOI: doi: 10.1016/j.marmicro.2009.06.005
Reference: MARMIC 1285

To appear in: Marine Micropaleontology

Received date: 4 December 2008
Revised date: 28 May 2009
Accepted date: 19 June 2009

Please cite this article as: Pike, Jennifer, Crosta, Xavier, Maddison, Eleanor J., Stickley, Catherine E., Denis, Delphine, Barbara, Loïc, Renssen, Hans, Observations on the relationship between the Antarctic coastal diatoms Thalassiosira antarctica Comber and Porosira glacialis (Grunow) Jørgensen and sea ice concentrations during the Late Quaternary, Marine Micropaleontology (2009), doi: 10.1016/j.marmicro.2009.06.005

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Observations on the relationship between the Antarctic coastal diatoms *Thalassiosira antarctica* Comber and *Porosira glacialis* (Grunow) Jørgensen and sea ice concentrations during the Late Quaternary

Jennifer Pikea, Xavier Crostab, Eleanor J. Maddisonc, Catherine E. Stickleyd, Delphine Denisb, Loïc Barbarab and Hans Renssene

a School of Earth and Ocean Sciences, Cardiff University, Main Building, Park Place, Cardiff, CF10 3YE, U.K. pikej@cardif.ac.uk

b UMR-CNRS 5805 EPOC, Université Bordeaux 1, Avenue des Facultés, 33405 Talence Cedex, France x.crosta@epoc.u-bordeaux1.fr, d.denis@epoc.u-bordeaux1.fr

c Department of Earth and Environmental Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA, U.K. e.j.maddison@open.ac.uk

d Department of Geology, University of Tromsø, Tromsø N-9037, Norway catherine.stickley@npolar.no

e Department of Paleoclimatology and Geomorphology, Vrije University, Amsterdam, The Netherlands hans.renssen@falw.vu.nl

Corresponding Author:

Jennifer Pike
School of Earth and Ocean Sciences, Cardiff University, Main Building, Park Place, Cardiff, CF10 3YE, U.K.
Tel: +44 29 2087 5181
Fax: +44 29 2087 4326
Email: pikej@cardiff.ac.uk
ABSTRACT

The available ecological and palaeoecological information for two sea ice-related marine diatoms (Bacillariophyceae), Thalassiosira antarctica Comber and Porosira glacialis (Grunow) Jørgensen, suggests that these two species have similar sea surface temperature (SST), sea surface salinity (SSS) and sea ice proximity preferences. From phytoplankton observations, both are described as summer or autumn bloom species, commonly found in low SST waters associated with sea ice, although rarely within the ice. Both species form resting spores (RS) as irradiance decreases, SST falls and SSS increases in response to freezing ice in autumn. Recent work analysing late Quaternary seasonally-laminated diatom ooze from coastal Antarctic sites has revealed that sub-laminae dominated either by T. antarctica RS, or by P. glacialis RS, are nearly always deposited as the last sediment increment of the year, interpreted as representing autumn flux. In this study, we focus on sites from the East Antarctic margin and show that there is a spatial and temporal separation in whether T. antarctica RS or P. glacialis RS form the autumnal sub-laminae. For instance, in deglacial sediments from the Mertz Ninnis Trough (George V Coast) P. glacialis RS form the sub-laminae whereas in similar age sediments from Iceberg Alley (Mac.Robertson Shelf) T. antarctica RS dominate the autumn sub-lamina. In the Dumont d’Urville Trough (Adélie Land), mid Holocene (Hypsithermal warm period) autumnal sub-laminae are dominated by T. antarctica RS whereas late Holocene (Neoglacial cool period) sub-laminae are dominated by P. glacialis RS. These observations from late Quaternary seasonally laminated sediments would appear to indicate that P. glacialis prefers slightly cooler ocean-climate conditions than T. antarctica. We test this relationship against two down-core Holocene quantitative diatom abundance records from Dumont d’Urville Trough and Svenner Channel (Princess Elizabeth Land) and compare the results with SST and sea ice concentration results of an Antarctic and Southern Ocean Holocene climate simulation that used a coupled atmosphere-sea ice-vegetation model forced with orbital parameters and greenhouse gas concentrations. We find that abundance of P. glacialis RS is favoured by higher
winter and spring sea ice concentrations and that a climatically-sensitive threshold exists between
the abundance of *P. glacialis* RS and *T. antarctica* RS in the sediments. An increase to >0.1 for the
ratio of *P. glacialis* RS:*T. antarctica* RS indicates a change to increased winter sea ice
collection (to >80% concentration), cooler spring seasons with increased sea ice, slightly
warmer autumn seasons with less sea ice and a change from ~7.5 months annual sea ice cover at a
site to much greater than 7.5 months. In the East Antarctic sediment record, an increase in the ratio
from <0.1 to above 0.1 occurs at the transition from the warmer Hypsithermal climate into the
cooler Neoglacial climate (~4 cal kyr) indicating that the ratio between these two diatoms has the
potential to be used as a semi-quantitative climate proxy.

Key words: East Antarctica, Quaternary, diatoms, sea ice

1. Introduction

Most of the ecological and palaeoecological information available for sea ice-related marine
diatoms *Thalassiosira antarctica* and *Porosira glacialis* suggests that these two species have
similar sea surface temperature (SST), sea surface salinity (SSS) and sea ice proximity preferences
and similar seasonal occurrences (summarised in Sections 1.1 and 1.2). For example, in Ross Sea
surface waters that emerge from beneath the ice shelf, *T. antarctica* cells are associated with a
diatom assemblage that also includes *P. glacialis* and *P. pseudodenticulata* (Cunningham and
Leventer, 1998). Along the Mac.Robertson Shelf in Iceberg Alley (Figure 1) deglacial seasonally
laminated sediments contain abundant *P. glacialis* resting spores (RS) that are found within *T.
anantarctica* RS-dominated sub-laminae that were deposited during autumn (Stickley et al., 2005).
On the other hand, in Dumont d’Urville Trough, Adélie Land (Figure 1), sub-laminae dominated by
T. antarctica RS are found in mid-Holocene (relatively warm, Hypsithermal) laminated sediments
(Core MD03-2601, Denis et al., 2006), whereas sub-laminae dominated by *P. glacialis* RS are
found in late Holocene (cool, Neoglacial) sediments (Core MD03-2597, Maddison, 2006). Further, deglacial/early Holocene laminated sediment from Mertz Ninnis Trough, George V Coast (Figure 1), also contain sub-laminae dominated by *P. glacialis* RS (Maddison et al., 2006). The *T. antarctica* RS and *P. glacialis* RS sub-laminae from both sites, and from both time intervals, occur at the top of late summer/autumn terrigenous-rich diatom laminae, which supports the contention that these two diatoms have broadly similar ecological preferences (Stickley et al., 2005). However, as pointed out by Denis et al. (2006), the more coastal position of the Mertz Ninnis Trough and MD03-2597 core sites (and associated *P. glacialis* RS sub-laminae) compared to the core site MD03-2601 (and associated *T. antarctica* RS sub-laminae) suggests that *P. glacialis* prefers cooler temperatures with higher sea ice concentrations than *T. antarctica*. In this study we review the available ecological information for these two diatom species. We then consolidate the perceived relationship between the two taxa as sedimentary indicators of autumnal conditions using laminated sediment sequences and published ecological information. Finally, we investigate down-core Holocene diatom assemblage records from two sites in coastal East Antarctica in order to establish whether the relationship developed from laminated sediment records and ecological information can be used as a more quantitative proxy for changing environmental conditions during the Late Quaternary.

1.1. *Ecology of Thalassiosira antarctica* Comber 1896

Thalassiosira antarctica is an Antarctic diatom species rarely found living within sea ice (Hasle and Heimdal, 1968; Leventer and Dunbar, 1987; Fryxell and Kendrick, 1988; Zielinski and Gersonde, 1997), however, it is commonly described as a sea ice-associated diatom (i.e. living in waters with a high concentration of sea ice) linked with low sea surface temperature (SST) and low sea surface salinity (SSS) (Villareal and Fryxell, 1983). Blooms of *T. antarctica* are often recorded in waters associated with newly forming sea ice, such as the formation of platelet ice next to the Ross Sea ice...
shelf (Cunningham and Leventer, 1998) and both frazil ice and platelet ice in the Weddell Sea (Smetacek et al., 1992; Gleitz et al., 1998). In the Weddell Sea, it has also been recorded under turbulent conditions (Gleitz et al., 1998) and from low salinity, nitrate-deplete, high pH crackpools associated with summer melting ice (Gleitz et al., 1996). Although it is rare to find *T. antarctica* in sea ice samples due to its requirement for open water to bloom (Bárcena et al., 1998) and its sensitivity to low light intensities (Doucette and Fryxell, 1985; Fryxell et al., 1987), it has been observed in some spring sea ice samples which suggests over-wintering in sea ice or re-suspension from the sediments (Villareal and Fryxell, 1983).

Thalassiosira antarctica appears to be a summer and autumn bloom species. It has been observed as a common component of the early summer phytoplankton around the Antarctic Peninsula (Sommer, 1991) and was recorded in summer sediment traps in the Ross Sea (Leventer pers. comm. in Taylor and McMinn, 2002). It has been described as a major component of phytoplankton blooms in non-stratified or weakly stratified Antarctic surface waters (Cremer et al., 2003) (strong water column stratification is usually associated with spring sea ice melt). *T. antarctica* has also been associated with autumn bloom conditions in the Ross Sea with production of resting spores related to the seasonally-late development of solid ice cover (Cunningham and Leventer, 1998).

However, contrary to these observations of natural populations, laboratory culture experiments revealed that *T. antarctica* can grow well in reduced light conditions in temperatures as low as -4°C (Bartsch, 1989; Aletsee and Jahnke, 1992), and that vegetative *T. antarctica* cells can survive in sea ice (Aletsee and Jahnke, 1992) and for prolonged periods of darkness (up to 214 days) without forming resting spores (Peters and Thomas, 1996a). It is believed that the formation of physiologically resting cells (identical in appearance to the vegetative cells) is induced by nutrient stress (Peters and Thomas, 1996b), or by low light intensities beneath the summer diatom bloom and/or associated nutrient depletion (Taylor and McMinn, 2001). However, culture experiments
carried out at -1.5°C failed to induce resting spore formation by nitrogen depletion (Villareal and Fryxell, 1983). Significant lipid accumulation occurs in the resting spores as they form (Doucette and Fryxell, 1985) and this lipid synthesis has been attributed to a synergistic interaction between reduced light levels, reduced SST and increased SSS in other Antarctic sea-ice related phytoplankton species (Smith and Morris, 1980; Palmisano and Sullivan, 1982). In conclusion, the exact trigger for resting spore formation in *T. antarctica* is not well understood.

Observations of *T. antarctica* from the sediment record are almost exclusively the resting spore stage (Fryxell et al., 1981) (Figure 2). *T. antarctica* resting spores are heavily silicified and this has been suggested as a mechanism to facilitate rapid sinking out of freezing surface waters (Doucette and Fryxell, 1985). The heavily silicified resting spores are more readily transported, hence, often become concentrated in Antarctic near-coastal sediments (Gersonde and Wefer, 1987; Hemer and Harris, 2003). From spatially extensive surface sediment records, *T. antarctica* resting spores are most abundant beneath regions where February SSTs of 0 to 0.5°C and where sea ice is present for at least 6 months per year with winter sea ice concentrations >70% and unconsolidated summer sea ice concentrations between 15-40% (Armand et al., 2005). Early Holocene sediments from Prydz Bay are characterised by abundant *T. antarctica* resting spores (average of 31% of the assemblage) and this has been related to seasonally warmer, more open marine conditions (Taylor and McMinn, 2002; Taylor and Leventer, 2003). In the Bransfield Strait, western Antarctic Peninsula, maximum abundance of *T. antarctica* resting spores in Holocene sediments is related to cold climate episodes (Bárcena et al., 1998), persistent influence of cold Weddell Sea water (Gersonde and Wefer, 1987; Leventer, 1991; Zielinski and Gersonde, 1997) and proximity to ice edge (Heroy et al., 2008). In deglacial and Holocene seasonally laminated Antarctic coastal sediments, *T. antarctica* resting spores commonly dominate the last recorded flux of the season, indicating their prior prevalence in mid- to late-summer blooms (as vegetative cells) and a relationship with falling temperatures (ice formation) and falling light levels (Maddison et al., 2005; Stickley et al., 2005).
1.2. Ecology of Porosira glacialis (Grunow) Jörgensen 1905

Generally, less is known about the ecological preferences of Porosira glacialis than for T. antarctica. Porosira glacialis is a bipolar diatom species associated with cold coastal waters adjacent to sea ice (Hasle, 1973; Taylor et al., 1997; Zielinski and Gersonde, 1997). Of the two species of Antarctic Porosira, *P. pseudodenticulata* is commonly observed living in pack ice and fast ice samples whereas *P. glacialis* is rarely recorded living in sea ice (Watanabe, 1988; Scott et al., 1994; Armand, 1997). It has been suggested that *P. glacialis* predominantly grows in the open ocean beyond the sea ice edge (Zielinski and Gersonde, 1997), however, *P. glacialis* has been observed in waters with high concentrations of slush and wave-exposed shore ice although, again, not living within the ice (Krebs et al., 1987). Similar to *T. antarctica*, in culture experiments, *P. pseudodenticulata* survived prolonged periods of darkness (up to 272 days) by forming physiologically resting cells, not by forming resting spores (Peters and Thomas, 1996a). Resting spore formation was not induced at -1.5°C (Villareal and Fryxell, 1983), and the exact mechanism that promotes resting spore formation is not known.

P. glacialis is recorded in sediments predominantly as resting spores (Figure 2) and located shoreward of the maximum winter sea ice extent (Armand, 1997). From the sediment record, *P. glacialis* appears to grow in summer waters with SSTs ranging from -2 to 1.5°C (slightly cooler maximum temperature than *T. antarctica*) (Zielinski and Gersonde, 1997), and reaches maximum abundances with February SSTs of 0 to 0.5°C (Armand et al., 2005). From a spatially extensive sediment surface data set, *P. glacialis* is most abundant beneath regions that experience at least 7.5 months per year sea ice cover (slightly longer than *T. antarctica*), with <30% summer sea ice concentration and highly compacted winter sea ice (65-85% concentration) (Armand et al., 2005).

In deglacial, seasonally laminated sediments from Iceberg Alley, Mac.Roberston Shelf, *P. glacialis*
RS are abundant in *Thalassiosira antarctica* RS sub-laminae that record the final flux event of the year, thus suggesting a similarity in their growth requirements (Stickley et al., 2005). In Holocene laminated sediments from the Mertz-Ninnis Trough, George V Coast, *P. glacialis* RS sub-laminae are interpreted as representing late summer/autumn deposition as sea ice concentration in the Mertz Glacier polynya increased (Maddison et al., 2006).

2. **Materials and Methods**

2.1. **Materials**

This study uses a suite of Late Quaternary sediment cores recovered from the East Antarctic margin. Cores from Mertz Ninnis Trough (NBP0101 JPC10/KC10A), Iceberg Alley (NBP0101 JPC43B) and Svenner Channel (NBP0101 JPC24) were recovered during RVIB *Nathaniel B. Palmer* cruise NBP0101 during 2001 (Table 1, Figure 1). Cores from the Dumont d’Urville Trough (MD03-2597/MD03-2601) were recovered during the MD130-Images X-CADO cruise of RV *Marion Dufresne II* in 2003 (Table 1, Figure 1). All cores are, in part, seasonally laminated with the remaining stratigraphy being either intermittently laminated or homogenous siliceous-mud ooze (Crosta et al., 2005; Leventer et al., 2006; Maddison, 2006; Maddison et al., 2006). Intervals selected for lamina-scale analyses and down-core diatom assemblage analysis in this study are illustrated in Figure 1 and listed in Table 1.

The early Holocene and Neoglacial (Figure 1) laminated sediment sequences from Mertz Ninnis Trough were deposited approximately 30 km from the coast, beneath the site of a persistent winter polynya (Maddison et al., 2006). The two cores from Dumont d’Urville Trough were recovered from biogenic drift deposits that accumulated in small depressions, approximately 30 km and 60 km.
offshore, within the trough (Crosta et al., 2005). The Dumont d’Urville Trough region is an open
coastline with a typical regime of advance and retreat of seasonal sea ice, with the episodic presence
of a polynya (Arrigo and Van Dijken, 2003). Today, the sites are covered by sea ice for 8-9 months
of the year (Schweitzer, 1995). During the deposition of the deglacial laminated sediments in
Iceberg Alley the long, across-shelf trough that comprises the basin was surrounded by a calving
bay re-entrant (Leventer et al., 2006). This meant that even though the site is approximately 70 km
offshore today, it would have been subject to a seasonal sea ice retreat and advance regime typical
of more coastal sites. Svenner Channel is a coast-parallel trough on the eastern margin of Prydz
Bay. The core site is approximately 60 km from the coast and is subject to a typical seasonal sea
ice advance and retreat regime that results in a yearly sea ice presence of 10 months.

2.2. Lamina analyses: BSEI and LM sediment fabric analysis and quantitative diatom
assemblage analysis

Laminated sediments (Figure 1) were embedded in resin and polished thin sections were produced
for microscope analysis following the methods outlined in Maddison et al. (2006, NBP0101
JPC10/KC10A, MD03-2597), Denis et al. (2006, MD03-2601) and Stickley et al. (2005, NBP0101
JPC43B). Laminated sequences (polished thin sections) were logged for sediment fabric and
diatom assemblages at the 100 micron-scale using either scanning electron microscopy
backscattered electron imagery (BSEI, Pike and Kemp, 1996; Pearce et al., 1998) or optical light
microscopy (LM, Denis et al., 2006) (Table 2). For core sites NBP0101 JPC10/KC10A and MD03-2597
additional quantitative diatom assemblage analyses were carried on specific lamination types
following the method outlined in Maddison et al. (2006). These additional analyses facilitated
quantitative comparison of the relative abundance of T. antarctica RS and P. glacialis RS in the
laminations, as opposed to the more qualitative techniques involved in thin section analysis using
BSEI and LM. Data are presented as absolute abundance (valves per gramme), relative abundance
and *Hyalochaete Chaetoceros* resting spore-free (CRS-free) relative abundance (Table 3). CRS-free abundance is commonly used in Antarctic diatom assemblage analysis when CRS overwhelmingly dominate every assemblage (Leventer et al., 1996; Allen et al., 2005). The CRS-free abundance allows the ecological information within the minor species assemblage to be critically examined.

2.3. **Down-core quantitative diatom assemblage analysis**

Down-core quantitative diatom assemblage analysis was carried out on MD03-2601 (Dumont d’Urville Trough) and NBP0101 JPC24 (Svenner Channel) following the methods outlined in Crosta et al. (2007). These records allow the relationship between *T. antarctica* RS and *P. glacialis* RS, deduced from lamination-scale analyses of mainly deglacial sediments, to be investigated over the duration of the Holocene. *Porosira glacialis* RS and *P. pseudodenticulata* RS are grouped together, however, *P. glacialis* RS overwhelmingly dominates the group. *P. pseudodenticulata* has no distinct central annulus, a slightly larger diameter and fewer areolae in 10 µm (~60-80 µm; 10-12) than *P. glacilalis* (30-40 µm; 25-26) which often has a distinct central annulus. The two forms of *T. antarctica* RS are grouped (T1 and T2, Buffen et al., 2007), however, the cool *T. antarctica* RS form (T1) overwhelmingly dominates in both Dumont d’Urville Trough and Svenner Channel sediments.

2.4. **Modelled Holocene surface temperatures and sea ice concentrations**

The diatom abundance and sediment fabric data and interpretations will be compared with the results of a 9000-yr Holocene climate simulation using the ECBilt-CLIO-VECODE coupled atmosphere-sea ice-ocean-vegetation model forced with annually varying orbital parameters (monthly insolation at 60°S) and atmospheric greenhouse gas (carbon dioxide and methane)
concentrations derived from ice cores (Opsteegh et al., 1998; Goosse and Fichefet, 1999; Brovkin et al., 2002; Renssen et al., 2005). In the model, the vernal equinox is fixed at day 81 and the year is divided into 12 months of 30 days. All other forcings (e.g. solar constant, other greenhouse gases, ice sheet configuration) are set at AD 1750 values, hence, changes in ice sheet volume are not taken into account in the simulation used here. As well as comparing with the published East Antarctic modelled summer temperature record of Renssen et al. (2005), we will also compare our results to a sub-set of the whole model output for the Adélie Land sector that encompasses the Dumont d’Urville Trough core sites (south of 60°S, 140°E-150°E). Two 1000-year time periods from the Adélie Land mean monthly surface temperature and sea ice concentrations were selected to provide a measure of typical mean monthly conditions; the interval 4999-4000 yr BP was selected as typical of the Hypsithermal and 1999-1000 yr BP selected as representative of the Neoglacial. These two time periods were compared to investigate statistically significant differences in modelled monthly parameters between the Hypsithermal and Neoglacial. Significant differences in the means were found using a standard z-test (with 2-tailed critical values) for assessing differences in the means between large sample sets (Table 4).

3. Results

3.1 Laminated sediments – BSEI, LM and quantitative diatom assemblage analysis

Data for the lamina-scale diatom assemblage analyses, using BSEI, LM and quantitative abundance, come from both published sources and from new analyses. BSEI lamina characterisations for sediments from the Mertz-Ninnis Trough (NBP0101 JPC10/KC10A) are summarised from Maddison (2006) and Maddison et al. (2006). Similar data for the Dumont d’Urville Trough (MD03-2597) are summarised from Maddison (2006) and LM lamina data (MD03-2601) are summarised from Denis et al. (2006). Lamina-scale diatom assemblage data for sediments from
Iceberg Alley (NBP0101 JPC43B) are a combination of both published (Stickley et al., 2005, interval 21.84-23.96 m) and previously unpublished data (Stickley and Pike: interval 19.30-21.84 m). Tables 2 and 3 provide a summary of these data containing only the lamina or sub-lamina data relevant to this study.

3.1.1. *Thalassiosira antarctica* RS sub-laminae

Analysis of lamina occurrence data from the spectacularly laminated deglacial sediments of the East Antarctic margin reveals that when sub-laminae characterised by *T. antarctica* RS or *P. glacialis* RS occur, usually: (1) either one or the other species is dominant; and (2) they are found in a similar position within the seasonal succession of diatom assemblages and lamina types, i.e. at the end of the season of diatom production and subsequent flux to the sediment, late summer or autumn (Stickley et al., 2005; Denis et al., 2006; Maddison, 2006). In deglacial Iceberg Alley sediment, 43 of 68 *T. antarctica* RS sub-laminae occur in this position above a summer lamina (Table 2) and, consequently, directly below the following spring diatom ooze lamina from which they are separated by a sharp contact delineating the winter hiatus. Further, when a summer lamination is not present, 25 of 68 occurrences of *T. antarctica* RS sub-laminae follow a transitional lamination (Table 2), defined as having some characteristics of both spring diatom ooze laminae and summer terrigenous-rich laminae (Stickley et al., 2005). These transitional laminae nearly always grade upwards from a spring diatom ooze lamina and usually grade into a summer terrigenous-rich lamina, however, sometimes these transitional laminae are abruptly overlain by the following spring diatom ooze laminae. Usually, it is at the top of these latter transitional laminae that *T. antarctica* RS sub-laminae occur. When *T. antarctica* RS sub-laminae occur within the annual sediment increment, the mean annual sediment thickness is 2% greater than if sub-laminae do not occur. Further, if a summer lamination is followed by a *T. antarctica* RS sub-lamina, the summer lamina is, on average, 7% thicker than one that is not associated with a sub-lamina (Table 2). Qualitative
analysis of *T. antarctica* RS sub-laminae from Iceberg Alley also reveals that *P. glacialis* RS are more abundant in the sub-laminae than in the summer, terrigenous-rich laminae.

LM analysis of lamina sequences from the Holocene sediments of the less coastal MD03-2601 core from Dumont d’Urville Trough shows the presence of sub-laminae of *T. antarctica* RS associated with late summer/autumn in Hypsithermal-age sediments and the absence of the sub-laminae in Neoglacial-age sediments (Table 2, Denis et al., 2006). During the Hypsithermal period, annual sediment thickness was 46 mm compared with 21 mm during the Neoglacial, and mean thickness of *T. antarctica* RS sub-laminae during the Hypsithermal was 0.371 mm (Table 2, Denis et al., 2006). In contrast to the other, more coastal core site from Dumont d’Urville Trough (MD03-2597) these sections from MD03-2601 do not contain any *P. glacialis* RS sub-laminae during the Neoglacial.

3.1.2 *Porosira glacialis* RS sub-laminae

Nineteen out of twenty two occurrences of *P. glacialis* RS sub-laminae in deglacial Mertz-Ninnis Trough sediment appear in a late summer/autumn position in the seasonal lamina succession (Table 2). Quantitative diatom abundance analysis of Mertz-Ninnis Trough laminations reveals that although, in absolute terms, *P. glacialis* RS have a similar abundance in summer mixed diatom laminae as they do in *P. glacialis* RS sub-laminae (Table 3, Maddison et al., 2006), *P. glacialis* RS comprise, on average, 11.35% of the CRS-free assemblage in *P. glacialis* RS sub-laminae and only 2.29% in the summer mixed assemblage laminae (Table 3, Maddison et al., 2006). At this site, *T. antarctica* RS are absent from both the summer mixed diatom laminae and the *P. glacialis* RS sub-laminae (Table 3, Maddison et al., 2006). When a *P. glacialis* sub-lamina occurs within the annual sediment increment, the mean annual sediment thickness is 18% greater than if a sub-lamina does not occur (Table 2). BSEI analysis of a 0.28 m-long (17 year) sequence of early Neoglacial-age laminations from this site (NBP0101 KC10A; Table 1 and Figure 1) does not reveal any *T. antarctica* RS or *P. glacialis* RS sub-laminae (Maddison, 2006).
In Neoglacial laminated sediments from the more coastal Dumont d’Urville Trough core (MD03-2597), in 23 out of 26 years when *P. glacialis* RS sub-laminae occur, the sub-laminae appear in a late summer/autumn position (Table 2, Maddison, 2006), separated with a sharp contact from the overlying spring lamination. Quantitative diatom abundance analysis reveals that, in absolute terms, *P. glacialis* RS are more than 2.5 times as abundant in *P. glacialis* RS sub-laminae than they are in terrigenous-rich, summer mixed assemblage laminae. Further, *T. antarctica* RS are more than 2.5 times as abundant in *P. glacialis* RS sub-laminae than in terrigenous-rich, summer mixed assemblage laminae (Table 3, Maddison, 2006). When *P. glacialis* RS sub-laminae occur within the annual sediment increment, the mean annual sediment thickness is 12% greater than if sub-laminae do not occur (Table 2).

3.2. Holocene records from Dumont d’Urville Trough and Svenner Channel

Holocene relative abundance of *T. antarctica* RS and *P. glacialis* RS from Dumont d’Urville Trough (MD03-2601) and Svenner Channel (NBP0101 JPC24) (Figure 1) are shown in Figure 3. In general, at both sites, relative abundances of *T. antarctica* RS are higher than *P. glacialis* RS. In the Dumont d’Urville Trough, the relative abundance of *T. antarctica* RS steadily rises to a peak at ~8.9 cal kyr BP (Figure 3B). Abundance then generally stays above 10% until ~3.4 cal kyr BP when it falls below 10% until ~3.4 cal kyr BP. Abundance then becomes very low (<5%) between 2 cal kyr BP until ~1.1 cal kyr BP, after which it recovers to about 10% at the top of the core.

Relative abundance of *P. glacialis* RS displays an approximately inverse pattern. Abundance remains above 2% from ~10.8 cal kyr BP until ~8.7 cal kyr BP (Figure 3C), with a slight dip in abundance around 9.8 cal kyr BP. At 8.7 cal kyr BP, abundance falls abruptly below 2% until ~3.4 cal kyr BP, when it abruptly rises to above 2% until ~2.8 cal kyr BP when it falls below, and stays...
below, 2% until ~2 cal kyr BP. After 2.0 cal kyr BP, abundance rises to above 2% and then steadily falls towards the top of the core (~1 cal kyr BP).

In Svenner Channel, *T. antarctica* RS relative abundance rises from 11.2 cal kyr BP to a peak of >20% around 9.8 cal kyr BP (Figure 3E). Abundance dips below 20% around 9 cal kyr BP, rises to above 20% at ~8.7 cal kyr BP and then increases steadily to a peak at ~4.4 cal kyr BP. Relative abundance begins to decline and falls below 20% at ~3.4 cal kyr BP; it remains below 20% until the top of the core (~0.67 cal kyr BP). The relative abundance of *P. glacialis* RS remains below ~2% from 11.2 cal kyr BP until ~8.7 cal kyr BP when it begins to steadily rise (Figure 3F). At ~4.3 cal kyr BP, abundance rises above 2% and stays high until ~1 cal kyr BP when it falls below 2% at the top of the core.

The relationship between *T. antarctica* RS and *P. glacialis* RS can be further investigated by looking at the ratio between the two diatoms, and also the statistical correlation between the two species curves. The ratio between *P. glacialis* RS and *T. antarctica* RS (i.e. relative abundance of *P. glacialis* RS/relative abundance of *T. antarctica* RS) in Dumont d’Urville Trough is approaching 0.5 from the base of the core (~10.8 cal kyr BP) until ~10 cal kyr BP where it abruptly falls to very low values (Figure 3D). The ratio remains very low until ~3.4 cal kyr BP when it abruptly rises to >0.1 up to the top of the core (~1 cal kyr BP). Between ~2.8 cal kyr BP and ~2 cal kyr BP, the ratio falls, however, generally remains above 0.1. In Svenner Channel, the ratio between *P. glacialis* RS and *T. antarctica* RS remains generally <0.1 from ~11.2 cal kyr BP until ~4.3 cal kyr BP when it begins to rise (Figure 3G). The ratio reaches peak values (~0.5) at ~2.8 cal kyr BP and generally remains above 0.2 up to the top of the core (~0.7 cal kyr BP). The Pearson correlation coefficient (r) between the relative abundance of *T. antarctica* RS and *P. glacialis* RS is -0.19 for the Dumont d’Urville record (n=528). This correlation coefficient appears weak, but a test of significance of r demonstrates that threshold for significant values of r for sample sizes of n=528, at the 99%
significance level, is 0.14 (Lowry, 2008). There is no significant correlation between the relative
abundances of *T. antarctica* RS and *P. glacialis* RS in the Svenner Channel record. The correlation
coefficient is negative, but not significant ($r=-0.0004; n=348$). However, the significant negative
correlation between *T. antarctica* RS and *P. glacialis* RS for Dumont d’Urville Trough supports the
qualitative observations of an inverse relationship between the two taxa.

The diatom relative abundance curves are also compared with the modelled mean October to April
(i.e. austral summer) surface temperature record for the Holocene of East Antarctica (Renssen et al.,
2005) (Figure 3A). The modelled surface temperature record reveals temperatures warming from
~0.4°C warmer than pre-industrial levels at 9.0 kyr BP, to temperatures ~1.0°C warmer than pre-
industrial levels at ~4.3 kyr BP. Modelled temperatures then decline steadily until the end of the
record, approximately 300 yr BP. The Pearson correlation between the relative abundance of *T.
antarctica* RS and modelled mean summer temperature in Dumont d’Urville Trough and Svenner
Channel is 0.44 and 0.64, respectively. The Pearson correlation between the relative abundance of
P. glacialis RS and modelled mean summer temperature in Dumont d’Urville Trough and Svenner
Channel is -0.48 and -0.11, respectively. The Pearson correlation between the modelled mean
summer temperature and the ratio *P. glacialis* RS:*T. antarctica* RS is -0.55 for Dumont d’Urville
Trough and -0.40 for Svenner Channel. All but one of these correlation coefficient values are above
the threshold values of the Pearson’s test of significance ($r=-0.11$ falls below the threshold). This
highlights a positive correlation between the relative abundance of *T. antarctica* RS and modelled
mean summer temperature; a negative correlation between relative abundance of *P. glacialis* RS
and modelled mean summer temperature; and a more robust negative correlation between the ratio
P. glacialis RS:*T. antarctica* RS and modelled mean summer temperature.

4. Interpretation and Discussion
4.1. Mechanism for formation of *T. antarctica* and *P. glacialis* resting spore sub-laminae

When sub-laminae characterised by *T. antarctica* RS or *P. glacialis* RS occur in the laminated sediments from the East Antarctic margin, three features are consistent: (1) one or the other species is dominant; (2) the sub-laminae predominantly occur in the same position within the seasonal sedimentary sequence – late summer to autumn; and (3) overall annual sediment thickness is greater when sub-laminae are present (in deglacial Iceberg Alley sediments, the sub-laminae are also associated with summer laminations that are thicker than average indicating increased summer production and flux to the sediments). Hence (2) and (3) can be interpreted together as indicating that the sub-laminae are associated with years of higher diatom flux to the sediment. The occurrence of *T. antarctica* RS and *P. glacialis* RS sub-laminae (and thicker summer laminations) could indicate either a longer duration summer season of diatom productivity, promoting greater overall flux to the sediment, or enhanced summer conditions that favour higher *T. antarctica* and *P. glacialis* vegetative production, hence production and flux of the resting spores to the sediment in autumn.

Thalassiosira antarctica RS and *P. glacialis* RS sub-lamina production is likely to be related to a slow break up of sea ice over a sustained period in spring, i.e. a slow increase of temperatures over a few weeks so that when light levels increase sufficiently to promote vegetative cell growth there is a relatively high sea ice concentration that significantly effects surface water properties. *Porosira glacialis* and *T. antarctica* have both been found associated with spring sea ice-rich regions (Villareal and Fryxell, 1983; Krebs et al., 1987). Relatively high spring sea ice concentrations would lead to summer production favouring sea ice-associated diatoms such as *T. antarctica* and *P. glacialis* (standing stocks enhanced by ‘icy’ spring) and both species are known to be abundant in Antarctic summer waters (Sommer, 1991; Zielinski and Gersonde, 1997; Cremer et al., 2003).

Finally, sea ice formation in the autumn, accompanied by lowering SSTs, increased salinity and
lowering light levels (Doucette and Fryxell, 1985; Fryxell et al., 1987; Cunningham and Leventer, 1998), would induce resting spore formation from a vegetative population that was sufficiently large to produce a sub-lamina in the sediments (Stickley et al., 2005; Denis et al., 2006; Maddison et al., 2006). Years without sub-laminae suggest more rapid melting and break-up of sea ice in spring favouring more marginal ice zone/open water species and reduced growth of *T. antarctica* and *P. glacialis* in the subsequent summer. Lower summer vegetative populations of *T. antarctica* and *P. glacialis* would not lead to the production of sufficient numbers of resting spores to produce a sub-lamina in autumn.

Key to confirming this sea ice-based model of sub-lamina formation are the two cores from Dumont d’Urville Trough which are geographically close to each other and would have experienced similar changes in external forcing (i.e. by insolation and greenhouse gases). At MD03-2601, during the Hypsithermal, *T. antarctica* RS sub-laminae were preserved (core MD03-2597 did not recover Hypsithermal-age sediments). In the Neoglacial, no sub-laminae of either species were preserved at site MD03-2601, although higher relative abundances of *P. glacialis* RS are observed (Figure 3C), whereas *P. glacialis* RS sub-laminae were preserved at MD03-2597 (Table 2). In the modern day, site MD03-2597 is covered by less than 65% sea ice concentration for, on average, 111 days of the year, whereas site MD03-2601 is subject to less than 65% sea ice concentration for only 94 days of the year (difference between means is significant at >95%; mean values extracted from satellite-derived daily sea ice concentrations for 26 years between 1979 and 2006, National Snow and Ice Data Centre, http://nsidc.org/data/). Site MD03-2597 becomes ‘ice-free’ (consistently less than 65% sea ice concentration), on average, 19 days earlier in the spring than site MD03-2061 because the ice-edge not only retreats parallel with the coastline, but also retreats in a westward direction along the coast towards the Dumont d’Urville Trough. This is due to the areal expansion of the coastal Mertz Glacier Polynya, which merges with the open ocean in summer. So, not only are there less ice-free days at MD03-2601, the sea ice retreats later in the spring. The
combined evidence of higher relative abundance of *P. glacialis* RS (MD03-2601) and the presence of *P. glacialis* RS sub-laminae (MD03-2597) in Neoglacial sediments, along with the cessation of *T. antarctica* RS sub-laminae formation (MD03-2601), suggests that increasingly higher winter and spring sea ice concentrations occurred in the Dumont d’Urville Trough region in the Neoglacial, relative to the Hypsithermal period. Perhaps the environment became either too icy (given modern seasonal sea ice differences detailed above) or, more likely, had too short an ice-free summer season at site MD03-2601 during the Neoglacial for even *P. glacialis* to be able to form large enough populations to promote significant flux of resting spores to the sea floor and subsequent sub-laminae formation.

4.2. Environmental controls on the *P. glacialis* RS:*T. antarctica* RS ratio in Holocene sediments

From the lamination data, *T. antarctica* RS and *P. glacialis* RS sub-laminae are both interpreted as representing years with relatively high spring sea ice concentrations, however, what threshold under these conditions would govern changes in the relative abundance of the two species seen throughout the Holocene (Figure 3), given that they appear to have similar ecologies? Here we combine our sea ice-based mechanism of sub-lamina formation with published ecological preferences and modelled Holocene surface temperature and sea ice concentrations from the Adélie Land sector (Table 4, Figure 4) to present a model of the environmental conditions that alter the relative abundance of *T. antarctica* RS and *P. glacialis* RS in the sediments.

P. glacialis appears to prefer somewhat higher winter and spring sea ice concentrations than *T. antarctica*. Maximum abundances of *P. glacialis* RS in the sediment are found beneath regions subject to >7.5 months per year sea ice cover (*T. antarctica* prefers >6 months), <30% summer sea ice concentration (*T. antarctica* similar) and highly compacted winter sea ice (up to 85% concentration; *T. antarctica* prefers slightly less, but still >70%) (Armand et al., 2005). These
ecological observations are supported by our Holocene records and comparisons with the modelled summer surface temperatures from East Antarctica (Renssen et al., 2005). Increased abundance of *T. antarctica* RS in the sediments from Dumont d’Urville Trough and Svenner Channel is positively correlated with modelled summer surface temperatures whereas increased abundance of *P. glacialis* RS is negatively correlated with modelled summer surface temperatures (Figure 3).

The modelled sea ice concentration and surface temperature records for the Adélie Land sector suggest that the cool Neoglacial period had higher winter and early spring sea ice concentrations than the mid Holocene Hypsithermal (Table 4, Figure 4), with significantly lower late spring and early summer temperatures. In autumn, the Neoglacial had lower sea ice concentrations than the Hypsithermal with slightly higher temperatures. This model output supports the interpretation from ecological and seasonal sedimentological data that *P. glacialis* prefers slightly cooler and ‘icier’ winter and spring conditions than *T. antarctica*, which is why its abundance was enhanced during the Neoglacial off both Adélie Land and Princess Elizabeth Land. A subsequent long summer/autumn season, as suggested by the model data, would favour the build-up of larger populations of *P. glacialis* and concomitantly reduced populations of *T. antarctica*. Our interpretations are in agreement with those of Crosta et al. (2008) who state that seasonal sea ice distribution during the Holocene of East Antarctica is more complicated than a simple pattern of less sea ice during the warmer Hypsithermal, and more during the cooler Neoglacial.

4.3. *P. glacialis* RS:*T. antarctica* RS – a new sediment proxy for winter and spring sea ice concentrations

The results from Dumont d’Urville Trough (MD03-2601) and Svenner Channel sediments presented here indicate that 0.1 appears to be a significant threshold value for the ratio *P. glacialis* RS:*T. antarctica* RS. An increase above 0.1 accompanies an important environmental change to
increased winter sea ice concentration, cooler spring seasons with increased sea ice, and slightly warmer autumn seasons with less sea ice. In the Holocene sediments of coastal East Antarctica, the ratio changes from <0.1 to >0.1 between 4.3-3.4 cal kyr BP (i.e. the transition from warmer Hypsithermal conditions to cooler, Neoglacial conditions, Masson et al., 2000; Crosta et al., 2007). However, it is possible to use the ecological information in an attempt to be more quantitative than this. Using the ecological preferences of *P. glacialis* and *T. antarctica* and its distribution in modern core top samples (Armand et al., 2005), an increase in the sediment ratio above 0.1 (i.e. enhanced *P. glacialis* RS and/or relatively reduced *T. antarctica* RS abundance) appears to indicate a change from ~7.5 months of annual sea ice cover (favouring *T. antarctica* production), to much greater than 7.5 months of annual sea ice cover (enhancing *P. glacialis* production), and an increase from ~70% winter sea ice concentration (favouring subsequent *T. antarctica* production) to highly compacted winter sea ice above 80% concentration (enhancing *P. glacialis* production). Although these may not seem like large changes, they appear to be key manifestations of the changes between warmer and cooler Holocene climate states as reflected in the diatom fossil record, and are in line with the changes suggested by previous diatom evidence for the Hypsithermal-Neoglacial transition (Crosta et al., 2008).

Attempts to apply the *P. glacialis* RS:*T. antarctica* RS proxy to west Antarctic Peninsula (WAP) diatom records from Palmer Deep (Taylor and Sjunneskog, 2002) and Bransfield Strait (Heroy et al., 2008) have met with limited success because the relative warmth of the WAP compared to the East Antarctica margin limits the abundance of *P. glacialis* RS in the sediments to be almost always less than 10% of *T. antarctica* RS. However, a preliminary analysis of Holocene diatom abundance records from the cooler NW Weddell Sea has proved promising in that stratigraphic intervals when *P. glacialis* RS:*T. antarctica* RS was >0.1 (interpreted as representing cool, sea ice-rich winter and spring conditions) are also intervals of high abundance of other sea ice-related diatoms such as *Fragilariopsis curta*, *F. cylindrus* and *Thalassiosira tumida* (Anna Hey, personal communication,
2008). This demonstrates the potential wider applicability of the $P.\ glacialis\ RS:T.\ antarctica\ RS$ ratio around the Antarctic coast.

5. Conclusions

This synthesis of information on the abundance of Thalassiosira antarctica and Porosira glacialis has shown that these two diatoms have similar ecological preferences. The combination of modern phytoplankton analyses, laboratory experiments and late Quaternary laminated sediment records reveals that high fluxes of $T.\ antarctica\ RS$ and $P.\ glacialis\ RS$ to the sediment are associated with prior high winter and spring sea ice concentrations that promote the build-up of large vegetative cell populations. In late autumn, abrupt sea ice advance, accompanied by decreasing temperatures and irradiance and increased salinities promotes resting spore formation from high summer/autumn standing stocks. The investigation of two core records from the Dumont d’Urville Trough and one from Svenner Channel showed that despite their similar ecological preferences, there were interesting differences in the Holocene occurrence of the two taxa. Relative abundance of $T.\ antarctica\ RS$ peaked during the warm mid-Holocene Hypsithermal period and declined into the cooler Neoglacial, whereas relative abundance of $P.\ glacialis\ RS$ peaked during the late Holocene, cool Neoglacial period. Increased $P.\ glacialis\ RS$ abundance appeared to be linked with higher winter and spring sea ice concentrations than $T.\ antarctica\ RS$. These conclusions are corroborated by a comparison with modelled Holocene sea ice concentrations and surface temperatures for the Adélie Land sector. The model output reveals higher winter and early spring sea ice concentrations, and lower spring and early summer temperatures during the Neoglacial relative to the Hypsithermal (which would promote increased populations of $P.\ glacialis$). Investigation of the ratio of relative abundance of the two diatoms, $P.\ glacialis\ RS:T.\ antarctica\ RS$, revealed that a threshold of 0.1 was important. The ratio abruptly increased from <0.1 to >0.1 at the Hypsithermal to Neoglacial transition. An increase in the ratio $P.\ glacialis\ RS:T.\ antarctica\ RS$ to greater than 0.1 appears to
indicate a change from ~7.5 months of annual sea ice cover to much greater than 7.5 months of cover, and an increase of winter sea ice concentrations from 70% to >80%. An attempt to apply the

P. glacialis RS:*T. antarctica* RS ratio to other core sites from West Antarctica, in particular the NW

Weddell Sea, shows that the relationship between these two diatom species may be able to reveal

information about past winter and spring sea ice concentrations around the Antarctic margin.

Acknowledgements

This research was funded by Natural Environment Research Council (NERC) research grant

NER/A/S/2001/01106 (JP), NERC postgraduate research studentship NER/A/2002/10350 (EJM at

the School of Earth and Ocean Sciences, Cardiff University). XC was funded by the project

TARDHOL through the national EVE-LEFE program (INSU-CNRS). This manuscript was
developed during JP’s stay at EPOC, funded by the Invited Professor Scheme of Bordeaux I

University. The climate modelling work was supported by the Netherlands Organization for

Scientific Research (HR). JP would like to thank Captain Joe Borkowski, the Edison Chouest

Offshore crew, the Raytheon Polar Services Company staff and scientific party aboard the RVIB

Nathaniel B. Palmer during cruise NBP01-01, and the staff at the Antarctic Research Facility

(Florida State University) for assistance with sampling. We (JP, CES, EJM, XC) particularly

acknowledge discussion and encouragement over many stages of this research by Amy Leventer.

XC personally thanks members of the Images X (CADO) cruise and from cruise NBP01-01 for

providing data and suggestions. Logistical support for Images X (CADO) cruise was provided by

IPEV-TAAF. JP would also like to thank Charlotte Sjunneskog for sharing west Antarctic

Peninsula diatom data sets, and Ian Thomas for assistance in handling the NSIDC satellite daily sea

ice concentration data set. Finally we would like to thank María Ángeles Bárcena Pernía and one

anonymous reviewer for their careful consideration of our manuscript.
References

Table and Figure Captions

Table 1: East Antarctica margin sediment core information, including details of location, length, distance from coast, core intervals analysed and age of intervals analysed.

Table 2: Summary of lamina and sub-lamina thickness measurements from BSEI and LM of East Antarctic laminated sediment sequences.

Table 3: Quantitative abundance of *Porosira glacialis* RS and *Thalassiosira antarctica* RS from selected East Antarctic sediment laminae and sub-laminae.

Table 4: Summary of Adélie Land sector modelled Holocene surface temperature and sea ice concentrations for typical Hypsithermal (4000-4999 yr BP) and typical Neoglacial (1000-1999 yr BP) periods (extracted from Renssen et al., 2005). Surface temperatures and sea ice concentrations are given as anomalies from the pre-industrial mean (1000-250 yr BP).

Figure 1: Locations of the East Antarctic margin sediment cores used in this investigation. AL = Adélie Land and PEL = Princess Elizabeth Land. The intervals sampled from each of the cores are shown by the black (BSEI and LM sediment fabric analyses) and grey (Holocene down-core quantitative diatom abundance analyses). The presence of *Thalassiosira antarctica* RS sub-laminae is indicated by white and *Porosira glacialis* RS sub-laminae by a vertical line.

Figure 2: Light microscope (LM) and scanning electron microscope (SEM) images of *Thalassiosira antarctica* and *Porosira glacialis* resting spores. SEM micrographs taken of Au-Pd coated, lamina parallel sediment fracture surfaces. A-B. LM micrographs of *T. antarctica* resting spores (NBP01-01 JPC10, 19.536 cm). C-D. Secondary electron SEM micrographs of *T.*
antarctica resting spores (MD03-2597, 5307.5 cm, scale bars G = 5 microns, H = 10 microns). **F.** LM micrographs of *P. glacialis* resting spores (NBP01-01 JPC10, 19.536 cm). **G-H.** Secondary electron SEM micrographs of *P. glacialis* resting spores (NBP01-01 JPC10, 19.463 cm; scale bars C = 10 microns, D = 50 microns).

Figure 3: Holocene *Thalassiosira antarctica* and *Porosira glacialis* resting spore abundance from Dumont d’Urville Trough (MD03-2601) and Svenner Channel (NBP01-01 JPC24). **A.** Modelled mean summer (October to April) surface temperature (relative to the pre-industrial mean (1000-250 yr BP)) from Renssen et al. (2005). **B-D.** Dumont d’Urville Trough records. **B.** Relative abundance of *T. antarctica* RS. **C.** Relative abundance of *P. glacialis* RS. **D.** Ratio of *P. glacialis* RS:*T. antarctica* RS. **E-G.** Svenner Channel records. **E.** Relative abundance of *T. antarctica* RS. **F.** Relative abundance of *P. glacialis* RS. **G.** Ratio of *P. glacialis* RS:*T. antarctica* RS. Neoglacial and Hypsithermal intervals are defined following Crosta et al. (2005).

Figure 4: Schematic diagram illustrating differences modelled sea ice concentrations and surface temperatures between Hypsithermal and Neoglacial. Differences significant at the 99% confidence interval are shown with horizontal lines and differences at the 95% confidence interval are shown with horizontal curves. Where the Hypsithermal and Neoglacial lines overlap there is no statistically significant difference between the two records.
Table 1

<table>
<thead>
<tr>
<th>Cruise</th>
<th>Location</th>
<th>Core</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Water depth / m</th>
<th>Distance from coast / km</th>
<th>Core length / m</th>
<th>Interval(s) analysed / m</th>
<th>Age /cal yr BP¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>NBP01-01</td>
<td>Mertz-Ninnis Trough</td>
<td>JPC10</td>
<td>66°34.334'S</td>
<td>143°05.168'E</td>
<td>850</td>
<td>~30</td>
<td>21.35</td>
<td>Thin sections: 17.36-20.60</td>
<td>6756-11384</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KC10A</td>
<td></td>
<td></td>
<td></td>
<td>2.50</td>
<td></td>
<td>Thin sections: 2.05-2.38</td>
<td>3820-3892</td>
</tr>
<tr>
<td>MD130-Images X-CADO</td>
<td>Dumont d'Urville Trough</td>
<td>MDO3-2597</td>
<td>66°24.74'S</td>
<td>140°25.26'E</td>
<td>1025</td>
<td>~30</td>
<td>57.34</td>
<td>Thin sections: 13 x 15-cm-intervals between 18.75-56.83</td>
<td>925-2814</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MDO3-2601</td>
<td>66°03.07'S</td>
<td>138°33.43'E</td>
<td>746</td>
<td>~60</td>
<td>40.24</td>
<td>Diatom abundance: 0-40.25</td>
<td>1000-10843</td>
</tr>
<tr>
<td>NBP01-01</td>
<td>Iceberg Alley</td>
<td>JPC43B</td>
<td>66°55.943'S</td>
<td>64°07.376'E</td>
<td>465</td>
<td>~75</td>
<td>23.96</td>
<td>Thin sections: 19.30-23.96</td>
<td>10500-11500</td>
</tr>
<tr>
<td>NBP01-01</td>
<td>Svenner Channel</td>
<td>JPC24</td>
<td>68°41.660'S</td>
<td>76°42.557'E</td>
<td>848</td>
<td>~60</td>
<td>15.35</td>
<td>Diatom abundance: 0-17.00</td>
<td>655-11082</td>
</tr>
</tbody>
</table>

¹ Age models from Denis et al. (2006), Maddison (2006), Maddison et al. (2006), and Leventer et al. (2006)
<table>
<thead>
<tr>
<th>Location</th>
<th>P. glacialis RS or T. antarctica RS</th>
<th>Sediment Increment Type</th>
<th>Mean Thickness (standard deviation) /mm</th>
<th>No. of Measurements (n)</th>
<th>Minimum thickness /mm</th>
<th>Maximum thickness /mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mertz-Ninnis Trough (NBP0101 JPC10) Early Holocene</td>
<td>P. glacialis RS</td>
<td>Annual thickness</td>
<td>17.5 (16.9)</td>
<td>116</td>
<td>1.8</td>
<td>103.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Annual thickness if P. glacialis RS sub-laminae are present</td>
<td>20.6 (14.6)</td>
<td>22</td>
<td>3.0</td>
<td>53.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P. glacialis RS sub-lamina thickness</td>
<td>1.4 (1.1)</td>
<td>22</td>
<td>0.5</td>
<td>5.5</td>
</tr>
<tr>
<td>Dumont d’Urville Trough (MD03-2597) Neoglacial</td>
<td>P. glacialis RS</td>
<td>Annual thickness</td>
<td>18.1 (9.6)</td>
<td>119</td>
<td>1.1</td>
<td>46.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Annual thickness if P. glacialis RS sub-laminae are present</td>
<td>20.25 (9.1)</td>
<td>26</td>
<td>7.9</td>
<td>40.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P. glacialis RS sub-lamina thickness</td>
<td>2.2 (1.4)</td>
<td>35</td>
<td>0.5</td>
<td>5.9</td>
</tr>
<tr>
<td>Dumont d’Urville Trough (MD03-2601) Neoglacial Hypsithermal</td>
<td>T. antarctica RS</td>
<td>Annual thickness</td>
<td>21 (14)</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Annual thickness if T. antarctica RS sub-laminae are present</td>
<td>46 (16)</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>T. antarctica RS sub-lamina thickness</td>
<td>0.371 (0.289)</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iceberg Alley (NBP0101 JPC43B) Deglacial</td>
<td>T. antarctica RS</td>
<td>Annual thickness</td>
<td>21.59 (17.69)</td>
<td>223</td>
<td>1.04</td>
<td>99.05</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Annual thickness if T. antarctica RS sub-laminae are present</td>
<td>21.98 (16.16)</td>
<td>67</td>
<td>1.86</td>
<td>81.32</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T. antarctica RS sub-lamina thickness</td>
<td>1.16 (1.70)</td>
<td>68</td>
<td>0.03</td>
<td>10.47</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Summer thickness</td>
<td>5.35 (5.45)</td>
<td>159</td>
<td>0.28</td>
<td>33.49</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Summer thickness if T. antarctica RS sub-laminae are present</td>
<td>5.74 (6.86)</td>
<td>46</td>
<td>0.33</td>
<td>33.49</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T. antarctica RS sub-lamina thickness if associated with top of summer lamina</td>
<td>1.33 (2.04)</td>
<td>43</td>
<td>0.03</td>
<td>10.47</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Transitional lamina thickness</td>
<td>9.52 (9.28)</td>
<td>110</td>
<td>0.73</td>
<td>49.76</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Transitional lamina thickness if followed by T. antarctica RS sub-lamina</td>
<td>8.29 (4.49)</td>
<td>25</td>
<td>1.26</td>
<td>18.42</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T. antarctica RS sub-lamina thickness if associated with top of transitional lamina</td>
<td>0.88 (0.81)</td>
<td>25</td>
<td>0.25</td>
<td>3.28</td>
</tr>
</tbody>
</table>

1 26 years have P. glacialis RS sub-laminae; 5 years have multiple sub-laminae
2 67 years have T. antarctica RS sub-laminae; 1 year has 2 sub-laminae
3 46 years have T. antarctica RS sub-laminae; in 43/46 years the sub-lamina is at the top of the summer lamina; in 3/46 years, the sub-lamina is within the summer lamina
4 Four transitional laminae, overlain by T. antarctica RS sub-laminae, are followed by summer laminae associated with T. antarctica RS sub-laminae
<table>
<thead>
<tr>
<th>Location</th>
<th>Sub-lamina type</th>
<th>P. glacialis RS or T. antarctica RS abundance in lamina or sub-lamina types</th>
<th>Mean Abundance (standard deviation) / x 10^6 valves/g</th>
<th>No. of Measurements (n)</th>
<th>Minimum / x 10^6 valves/g</th>
<th>Maximum / x 10^6 valves/g</th>
<th>Relative Abundance (%) All/CRS-free</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mertz-Ninnis Trough</td>
<td>P. glacialis RS</td>
<td>P. glacialis RS abundance in summer mixed diatom lamina</td>
<td>6.9 (2.7)</td>
<td>5</td>
<td>3.9</td>
<td>9.5</td>
<td>0.38 / 2.29</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T. antarctica RS abundance in summer mixed diatom lamina</td>
<td>0 (0)</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0 / 0.42</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P. glacialis RS abundance in P. glacialis RS sub-lamina</td>
<td>7.2 (3.9)</td>
<td>4</td>
<td>3.2</td>
<td>10.6</td>
<td>0.24 / 11.35</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T. antarctica RS abundance in P. glacialis RS sub-lamina</td>
<td>0 (0)</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0 / 0</td>
</tr>
<tr>
<td>Dumont d’Urville Trough</td>
<td>P. glacialis RS</td>
<td>P. glacialis RS abundance in summer mixed diatom lamina</td>
<td>20.3 (9.9)</td>
<td>5</td>
<td>10.9</td>
<td>34.8</td>
<td>2.91 / 5.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T. antarctica RS abundance in summer mixed diatom lamina</td>
<td>2.4 (3.6)</td>
<td>5</td>
<td>0</td>
<td>8.6</td>
<td>0.39 / 0.81</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P. glacialis RS abundance in P. glacialis RS sub-lamina</td>
<td>53.9 (27.2)</td>
<td>3</td>
<td>33.5</td>
<td>84.8</td>
<td>7.08 / 15.48</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T. antarctica RS abundance in P. glacialis RS sub-lamina</td>
<td>6.7 (6.7)</td>
<td>3</td>
<td>0</td>
<td>13.4</td>
<td>0.89 / 3.16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>May</th>
<th>Jun</th>
<th>Jul</th>
<th>Aug</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean Hypsithermal</td>
<td></td>
</tr>
<tr>
<td>surface temperature (°C)</td>
<td>0.79</td>
<td>1.58</td>
<td>0.56</td>
<td>-0.94</td>
<td>-1.55</td>
<td>-1.62</td>
<td>-1.61</td>
<td>-1.61</td>
<td>-1.61</td>
<td>-1.63</td>
<td>-1.53</td>
<td>-0.63</td>
</tr>
<tr>
<td>Mean Neoglacial</td>
<td></td>
</tr>
<tr>
<td>surface temperature (°C)</td>
<td>0.68</td>
<td>1.59</td>
<td>0.63</td>
<td>-0.90</td>
<td>-1.54</td>
<td>-1.61</td>
<td>-1.61</td>
<td>-1.61</td>
<td>-1.61</td>
<td>-1.63</td>
<td>-1.58</td>
<td>-0.78</td>
</tr>
<tr>
<td>z value</td>
<td>2.79</td>
<td>-0.16</td>
<td>-2.11</td>
<td>-1.97</td>
<td>-2.05</td>
<td>-1.84</td>
<td>-0.18</td>
<td>0.55</td>
<td>0.22</td>
<td>-2.16</td>
<td>7.82</td>
<td>7.07</td>
</tr>
<tr>
<td>Significance level of</td>
<td></td>
</tr>
<tr>
<td>difference between the</td>
<td></td>
</tr>
<tr>
<td>mean surface temperatures</td>
<td>99%</td>
<td>none</td>
<td>95%</td>
<td>95%</td>
<td>95%</td>
<td>90%</td>
<td>none</td>
<td>none</td>
<td>none</td>
<td>95%</td>
<td>>99%</td>
<td>>99%</td>
</tr>
<tr>
<td>Mean Hypsithermal</td>
<td></td>
</tr>
<tr>
<td>sea ice concentration (%)</td>
<td>0.29</td>
<td>0.25</td>
<td>0.33</td>
<td>0.53</td>
<td>0.80</td>
<td>0.88</td>
<td>0.87</td>
<td>0.87</td>
<td>0.83</td>
<td>0.76</td>
<td>0.58</td>
<td>0.41</td>
</tr>
<tr>
<td>Mean Neoglacial</td>
<td></td>
</tr>
<tr>
<td>sea ice concentration (%)</td>
<td>0.28</td>
<td>0.24</td>
<td>0.30</td>
<td>0.50</td>
<td>0.79</td>
<td>0.88</td>
<td>0.88</td>
<td>0.88</td>
<td>0.85</td>
<td>0.77</td>
<td>0.59</td>
<td>0.41</td>
</tr>
<tr>
<td>z value</td>
<td>2.15</td>
<td>3.20</td>
<td>4.61</td>
<td>4.86</td>
<td>2.52</td>
<td>-0.53</td>
<td>-3.42</td>
<td>-3.72</td>
<td>-3.80</td>
<td>-2.76</td>
<td>-1.38</td>
<td>0.87</td>
</tr>
<tr>
<td>Significance of</td>
<td></td>
</tr>
<tr>
<td>difference between the</td>
<td></td>
</tr>
<tr>
<td>mean sea ice concentrations</td>
<td>95%</td>
<td>>99%</td>
<td>>99%</td>
<td>>99%</td>
<td>>98.5%</td>
<td>none</td>
<td>>99%</td>
<td>>99%</td>
<td>>99%</td>
<td>99%</td>
<td>none</td>
<td>none</td>
</tr>
</tbody>
</table>
Figure 1

- Svenner Channel
- Dumont d’Urville Trough
- Mertz-Ninnis Trough
- Iceberg Alley
- 70°S
- 500 km

- Lamina-scale analyses
- Diatom abundance analyses
- *T. antarctica* RS sub-laminae
- *P. glacialis* RS sub-laminae

Cal yr BP:
- 0
- 1000
- 2000
- 3000
- 4000
- 5000
- 6000
- 7000
- 8000
- 9000
- 10000
- 11000
- 12000
- 13000

- Neoglacial
- Hypsithermal
- Deglaciation
Figure 3

Figure 3
Figure 4

- **Winter**
 - Sea Ice Concentration

- **Spring**
 - SPRING: cooler and ‘icier’ in Neoglacial
 - Autumn: warmer with delayed freezing in Neoglacial

- **Summer**

- **Autumn**
 - Neoglacial
 - Hypsithermal