Organic geochemistry of the crater-fill sediments from Boltysh impact crater, Ukraine

Conference Item

How to cite:


For guidance on citations see FAQs

Link(s) to article on publisher’s website:
http://www.goldschmidt2009.org/index

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies page.

oro.open.ac.uk
ORGANIC GEOCHEMISTRY OF THE CRATER-FILL SEDIMENTS FROM BOLTYSH IMPACT CRATER, UKRAINE

Jonathan S. Watson¹,², David W. Jolley³, Iain Gilmour⁴, Eugene P. Gurov⁴, Mabs A. Gilmour¹, Simon P. Kelley²
¹Planetary and Space Sciences Research Institute, The Open University, Milton Keynes, MK7 6AA, UK
²Department of Earth and Environmental Sciences, The Open University, Milton Keynes, MK7 6AA, UK
³Department of Geology and Petroleum Geology, University of Aberdeen, AB24 3UE, UK
⁴Ukrainian Academy of Sciences, Kiev, Ukraine

INTRODUCTION
The Boltysh crater has been known for several decades and was first drilled in the 1960s as part of a study of economic oil shale deposits. Unfortunately, the cores were not curated and have been lost. We have re-drilled the impact crater and have recovered a near continuous record of ~400 m of organic-rich sediments together with 15 m of suevite. The sediments were deposited in a deep isolated lake and span a period ~10 Ma.

The Boltysh impact crater, centred at 48°54'N and 32°15'E, is a complex impact structure formed on the crystalline basement rocks of the Ukrainian shield, which comprise porphyroblastic granites (age ca. 1.55 Ga) and biotite gneisses (age ca. 1.85 – 2.22 Ga) [1]. The structure is covered by Quaternary sediments and has been dated at 65.17±0.64 Ma [2]. At 24 km diameter, the impact is unlikely to have contributed substantially to the worldwide devastation at the end of the Cretaceous.

PRELIMINARY RESULTS
The lowermost 15m of the core is predominantly a polymict suevite breccia with evidence of secondary hydrothermal activity (Figure 2a). A sharp, 60°, angular contact marks the boundary between the impact breccia and the overlying sedimentary deposits (Figure 2b).

The first sediments to be deposited in the crater lake occur at 581.5m and comprise a series of thin turbidite beds overlain by progressively more organic-rich shales (Figure 3). The 400 m of overlying sediments cover a period of approximately 10 Ma. Preliminary palynological investigation indicates a number of significant floral and faunal transitions throughout the core and work is in progress to establish if the Cretaceous-Tertiary Boundary exists within the basal section of the core.

Distribution of organic compounds indicate the main sources of organic matter in the post-impact sediments are dominated by algal input (Figure 4) with an increasing higher plant contribution up the core, this trend is also observed in the C/N ratios.

From isomeric distributions of biomarkers, sediments just above the impact boundary are still thermally immature (before the oil generation window). However there is evidence for some heating/warming of the overlying of the sediments from the residual heat from the impact, but only in 12 m of sediment above the impact boundary (Figure 5). Carbon isotopic analysis of the bulk organic material shows that there are a number of pronounced isotopic excursions in the first 100 m of core above the boundary (Figure 6).

PLANNED WORK
Work is in progress to complete the detailed palynological survey of the core and organic geochemical analyses. These studies will enable us to reconstruct the paleoenvironmental history of the post-impact environment at Boltysh and to examine the subsequent paleoenvironmental record preserved in the crater-fill sediments for a region of North Tethys where paleoenvironmental information is presently scarce.

REFERENCES