Fuzzy image segmentation using location and intensity information

Conference or Workshop Item

How to cite:

For guidance on citations see FAQs.

© [not recorded]
Version: [not recorded]

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies page.
Abstract

The segmentation results of any clustering algorithm are very sensitive to the features used in the similarity measure and the object types, which reduce the generalization capability of the algorithm. The previously developed algorithm called image segmentation using fuzzy clustering incorporating spatial information (FCSI) merged the independently segmented results generated by fuzzy clustering-based on pixel intensity and pixel location. The main disadvantages of this algorithm are that a perceptually selected threshold does not consider any semantic information and also produces unpredictable segmentation results for objects (regions) covering the entire image. This paper directly addresses these issues by introducing a new algorithm called fuzzy image segmentation using location and intensity (FSLI) by modifying the original FCSI algorithm. It considers the topological feature namely, connectivity and the similarity based on pixel intensity and surface variation. Qualitative and quantitative results confirm the considerable improvements achieved using the FSLI algorithm compared with FCSI and the fuzzy c-means (FCM) algorithm for all three alternatives, namely clustering using only pixel intensity, pixel location and a combination of the two, for a range of sample of images.

Keywords – Image Segmentation, Fuzzy Clustering, Connectivity, Location.

1. Introduction

Image segmentation is a very important research area because it plays a fundamental role in image analysis, understanding and coding [1]. It can be formally defined as the process of separating mutually exclusive regions (objects) of interest from other regions (objects) in an image. However, it is the most challenging task because there are often an inordinate number of objects and huge variations between them that make it almost impossible to approximate all the objects using a general frame. Most real-world images possess a certain amount of ambiguity and hence the segmentation produces fuzzy regions. Fuzzy image segmentation techniques are much more adept at processing such uncertainty than classical techniques and in this context fuzzy clustering algorithms are the most popular and extensively used image segmentation techniques [2].

Clustering methods [3], [4], [5], [6], [7] use many different feature types, such as brightness (the pixel intensity of a gray scale image) and geometrical (the spatial location of the pixels) for measuring the similarity but the segmented results are very much dependent on the types of feature used in clustering and the types of the objects in an image. This raises the question as to which type of feature is most suitable for which type of object so limiting the generalization of a clustering algorithm [3]. For instance, FCM cannot separate image regions which have similar pixel intensities by considering only their pixel intensity, though they may be able to by exploiting information on the location of pixels or a combination of pixel intensity and location. In the same way, clustering cannot segment adjacent regions having different pixel intensities by only considering pixel location, but may well be able to do so by considering respective pixel intensities. From the observations, it was also found that in the most cases, clustering algorithms using both features, i.e. a combination of pixel intensity and location did not produce the expected results for the objects of an image having the same pixel intensity and surface variations and in some cases, it also was unable to separate the objects having distinguishable pixel intensities. These issues were addressed by Ali et al. [8] who introduced an algorithm called image segmentation using fuzzy clustering incorporating spatial information (FCSI). The main drawback of this algorithm is that it uses a perceptually selected threshold, which redistributes the overlap between two regions without considering any semantic information about an object. It also does not handle well the situation where an object covers almost the entire image.

This paper introduces a new algorithm called fuzzy image segmentation using location and intensity information (FSLI). It considers the connectivity topological feature, and an object’s similarity based on pixel intensity and surface variation. The original FCSI algorithm has also been modified and integrated within the new algorithm. A
numerical analysis of FCM. FCSI and the proposed FSLI is performed using one of the efficient objective segmentation evaluation methods, namely discrepancy based on the number of misclassified pixels [9]. In this paper all the clustering results are presented using the fuzzy c-means (FCM) algorithm [3] for pixel intensity only, pixel location only and a combination of the two. The paper is organized as follows: In Section 2, the basic mathematical principles of the FCM algorithm are outlined, while the theoretical concepts of the modified FCSI and the new FSLI algorithms are discussed in Sections 3 and 4 respectively. The numerical evaluation of the experimental results is analysed in Section 5. Finally, some conclusions are given in Section 6.

2. Fuzzy C-Means Algorithm (FCM)
FCM is the most popular and oldest fuzzy-based clustering technique [2]. It is still widely used in features analysis, pattern recognition, image processing, classifier design and clustering [10]. The FCM algorithm is mainly based on the optimization of the following objective function and constraints [2], [3]:

\[J_q(\mu,v) = \sum_{i=1}^{n} \sum_{j=1}^{c} (\mu_{ij})^{q} d_{ij}^{2} \]

\[0 \leq \mu_{ij} \leq 1; \quad i \in \{1,\ldots,c\} \quad \text{and} \quad j \in \{1,\ldots,n\} \]

\[\sum_{j=1}^{c} \mu_{ij} = 1; \quad j \in \{1,\ldots,n\} \]

\[0 < \sum_{j=1}^{c} \mu_{ij} < n; \quad i \in \{1,\ldots,c\} \]

where \(c \) and \(n \) are the number of clusters and data respectively. \(\mu \) is a set of membership values \(\mu_{ij} \). \(v \) is a vector containing the values of cluster centers \(v_{i} \). \(q \) is the fuzzifier \(1 < q \leq \infty \). \(d_{ij} \) is the Euclidean distance between a datum \(x \) and the centre of the \(i \)-th cluster \(v_{i} \). The objective function (1) is iteratively minimized using the following two equations for \(\mu \) and \(v \) respectively:

\[\mu_{ij} = \frac{1}{\sum_{k=1}^{c} \left(d_{ik} \right)^{-2/q}} \]

\[v_{i} = \frac{\sum_{j=1}^{n} (\mu_{ij})^{q} x_{j}}{\sum_{j=1}^{n} (\mu_{ij})^{q}} \]

The cluster centers are initialized either randomly or by an approximation method. The membership values \(\mu_{ij} \) and cluster centers \(v_{i} \) are updated through an iterative process until the maximum change in \(\mu_{ij} \) becomes less or equal to a specified threshold.

3. The Modified FCSI Algorithm
A detailed description of the original image segmentation using fuzzy clustering incorporating spatial information (FCSI) algorithm is given in [8]. The main drawback of this algorithm concerns the perceptually selected threshold used to redistribute the overlap between two regions without considering any semantic information of an object. To address this issue, the FCSI algorithm has been modified to redistribute the overlap by using 8-connected objects and the normalized pixel locations with a range from minimum to maximum gray level pixel intensity, thereby eliminating the threshold. The modified FCSI algorithm (Algorithm 1), is embedded in the new FSLI algorithm, which is described in the next section.

Algorithm 1: The modified fuzzy clustering incorporating spatial information (FCSI) algorithm.

Precondition: Initially segment regions \(R^{I} \) and \(R^{L} \) utilising pixel intensity and normalised pixel location or a combination of pixel intensity and normalised pixel location respectively produced by any fuzzy clustering algorithm. The number of segmented regions \(|R| \).

Postcondition: The final segmented regions \(R \).

1. Determine the similar (closest) regions of \(R^{I} \) to \(R^{L} \):

 \[\text{similar}(R^{I}) = \min_{R^{I} \in |R|} \left[\sum_{(x,y) \in R^{I}} \left(P_{v}(x,y) - P_{v}^{L}(x,y) \right) \right] \]

 where \(P_{v}(x,y) \in R^{I} \) and \(P_{v}^{L}(x,y) \in R^{L} \).

2. Merge similar regions between \(R^{I} \) and \(R^{L} \):

 \[R_{j}^I = \left\{ P(x,y) \mid P(x,y) \in R^{I}, \text{OR} \ P(x,y) \in R^{L} \right\} \]

 where \(P(x,y) \) is the pixel at location \(x, y \) and \(R^{I} \) is similar to \(R^{L} \).

3. Calculate the overlap between the two merged regions:

 \[R_{j}^{L} \cap R_{i}^{L} = \left\{ P(x,y) \mid P(x,y) \in R_{i}^{L}, \text{AND} \ P(x,y) \in R_{j}^{L}, \text{AND} i \neq j \text{AND} 1 \leq i, j \leq |R| \right\} \]

4. Redistribute the overlap by considering 8-connected objects.

5. Redistribute again the overlap using normalized pixel location and pixel intensity if there are any more pixels in the overlapping region.
4. The FSLI Algorithm

As mentioned in Section 1, the segmented results of a clustering algorithm depend on the features of the similarity measure and the types of object in an image. The original FCSI algorithm did not consider topological information about an object and was sensitive to the value of the threshold. In this section an algorithm called fuzzy image segmentation using location and intensity information (FSLI) is presented (Algorithm 2) to reduce the aforementioned limitations.

Algorithm 2: The fuzzy image segmentation using location and intensity (FSLI) algorithm

Precondition: The foreground of the image to be segmented and the number of segmented regions (ℜ).

Postcondition: The final segmented regions ℜ.

1. Calculate the areas A^e and A^f of the entire image (I) and the foreground (f) respectively.

 $A^e = \|P(x, y) \mid P(x, y) \in I\|

 A^f = \|P(x, y) \mid P(x, y) \in f\|

2. Segment the image.

 IF $\left|A^e - A^f\right| \leq \text{Threshold } T$ THEN

 Execute the modified FCSI algorithm (Algorithm 1) using pixel intensity and a combination of pixel intensity and normalized pixel location for initial segmented regions.

 ELSE

 Find the initial regions R^L using FCM with a combination of pixel intensity and normalized pixel location. Determine the area A^k_i for each segmented region R^k_i.

 $A^k_i = \|P(x, y) \mid P(x, y) \in R^k_i\|

 where $i \in \{1, \ldots, ℜ\}$.

 IF $\left|A^f - \max_{i \in ℜ}\left(A^k_i\right)\right| \leq \text{Threshold } T_{\max}$ THEN

 The objects to be segmented are similar with respect to pixel intensity and surface variation and hence perform segmentation using FCM with normalised pixel location.

 ELSE

 The objects are dissimilar and hence segment the image using the modified FCSI algorithm (Algorithm 1) using pixel intensity and normalised pixel location.

FSLI segments the foreground objects by considering semantic information about these objects and considers two types of information – the image, which does not contain considerable number of background pixels and the similarity of the objects based on pixel intensity and surface variation. Firstly, the calculation of the area of the whole image A^e and the foreground A^f, in terms of the number of the pixels is described in Step 1, Algorithm 2. If the area of the foreground is approximately the same as the image, FCM using only pixel locations arbitrarily divides the image without considering semantic information about the image. To avoid this scenario, the difference between the foreground and entire image areas is perceptually thresholded and the segmentation performed using the modified FCSI algorithm (Algorithm 1) using pixel intensity and a combination of pixel intensity and normalised pixel location for initial segmented regions shown in Step 2, Algorithm 2. In all other cases, the segmentation is performed by considering the similarity and dissimilarity based on pixel intensity and surface variation of the objects of an image using a perceptually defined threshold T_{\max}. If FCM does not effectively separate the objects using a combination of pixel intensity and normalised pixel locations, the objects are similar in pixel intensity and surface variation and hence FCM with normalised pixel location is applied in segmentation (Step 2, Algorithm 2). Otherwise the objects are dissimilar and separated by the modified FCSI algorithm using pixel intensity and normalised pixel location. While the two thresholds T and T_{\max} are perceptually determined by a small percentage (1%) of the foreground and the largest segmented region respectively, the new algorithm is not very sensitive to them.

5. Experimental Results

The new FSLI, FCSI and fuzzy c-means (FCM) [3] algorithms were implemented using Matlab 6.1 (The Mathworks Inc.). For FCM, only the pixel intensity, normalised pixel location, and a combination of both features were used. Since the FSLI and FCSI algorithms are based on clustering, the prior number of clusters c has to be manually chosen. A representative sample of three different types of natural grey-scale image consisting of different regions (objects) having similar and dissimilar pixel intensity and surface variation, used in the experiment, were obtained from IMSI\(^\dagger\) and from the Internet. The backgrounds have been manually removed from all images for segmenting the foreground regions using their normalised pixel locations. Location in the form of the x, y coordinates of a pixel are normalised within the range $[0, 255]$ in order to keep them within the same range of pixel intensities for 8-bit gray scale images.

\(^\dagger\) IMSI’s Master Photo Collection, 1895 Francisco Blvd. East, San Rafael, CA 94901-5506, USA.
The quantitative analysis was conducted using one of the most efficient segmentation evaluation methods, namely discrepancy based on the number of misclassified pixels [9]. The confusion matrix M is a $\mathbb{R} \times \mathbb{R}$ square matrix, where M_{ij} represents the number of pixels misclassified into the i^{th} region from the j^{th} region. The two types of error, namely Type I, $error_{I}$, and Type II, $error_{II}$, are defined as follows:

$$error_{I} = \left(\frac{\sum_{i=1}^{\infty} M_{ij} - M_{ii}}{\sum_{j=1}^{\infty} M_{ij}} \right) \times 100$$ \hspace{1cm} (7)

$$error_{II} = \left(\frac{\sum_{j=1}^{\infty} M_{ij} - M_{ii}}{\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} M_{ij} - \sum_{j=1}^{\infty} M_{ij}} \right) \times 100$$ \hspace{1cm} (8)

Table 1: Error percentages for the bird region (R_1) segmentation in Figure 1

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Type I</th>
<th>Type II</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>FCM (location)</td>
<td>0</td>
<td>53.2926</td>
<td>26.6463</td>
</tr>
<tr>
<td>FCM (Intensity)</td>
<td>34.5845</td>
<td>33.7895</td>
<td>34.1870</td>
</tr>
<tr>
<td>FCM (location & Intensity)</td>
<td>0</td>
<td>48.5902</td>
<td>24.2951</td>
</tr>
<tr>
<td>FCSI</td>
<td>34.5845</td>
<td>13.4322</td>
<td>24.0084</td>
</tr>
<tr>
<td>FSLI</td>
<td>2.3275</td>
<td>22.2309</td>
<td>12.2792</td>
</tr>
</tbody>
</table>

Note: The two manually reference and segmented regions are presented by two different gray levels instead of the original region intensities, in order to provide a better visual interpretation of the segmented results.
Another series of experiments was performed using the image (Figure 2(a)) containing two cows having different pixel intensities. The results shown in Figure 2 (c)-(g) illustrate that the FSLI almost separated the two cows (Figure 2(g)), while the other algorithms did not (Figure 2(c)-(f)). The average percentage error (2.88%) shown in Table 2 for the FSLI algorithm of this image is also noticeably lower compared with the others (10.9%, 8.36%, 3.73% and 4.5%).

![Figure 2](image-url)
(a) Original cow image, (b) Manually segmented reference image for (a). Figures (c) – (e) the segmented results of the cow image into two regions using FCM with pixel locations only; pixel intensity only and both features respectively. (f) Segmentation result using FCSI. (g) Segmentation result using FSLI.

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Error Type I</th>
<th>Error Type II</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>FCM (location)</td>
<td>4.4310</td>
<td>17.3835</td>
<td>10.90</td>
</tr>
<tr>
<td>FCM (Intensity)</td>
<td>16.6476</td>
<td>0.0839</td>
<td>8.3657</td>
</tr>
<tr>
<td>FCM (location & Intensity)</td>
<td>7.4193</td>
<td>0.0479</td>
<td>3.7336</td>
</tr>
<tr>
<td>FCSI</td>
<td>4.4539</td>
<td>4.5525</td>
<td>4.5032</td>
</tr>
<tr>
<td>FSLI</td>
<td>5.7477</td>
<td>0.0120</td>
<td>2.8798</td>
</tr>
</tbody>
</table>

The final experiment was performed using the dinosaur image (Figure 3(a)) having two regions: the cow \((R_1)\) and the dinosaur \((R_2)\). Again the segmented results produced by the FSLI algorithm (Figure 3(g)) separated the entire cow \((R_1)\) and the dinosaur \((R_2)\) except for a few pixels of the dinosaur. The segmentation error percentage for the dinosaur image is shown in Table 3, which again confirms the improvement of the FSLI algorithm having average error of only 1.59%, whereas the average error for the other algorithm was 7.88%, 10.23%, 2.66% and 5.97%.

![Figure 3](image-url)
(a) Original dinosaur image, (b) Manually segmented reference image for (a). Figures (c) – (f) the segmented results of the cow image into two regions using FCM with pixel locations only; pixel intensity only and both features respectively. (f) Segmentation result using FSLI.
Figure 3: (a) Original dinosaur image. (b) Manually segmented reference image for (a). Figures (c) – (e) the segmented results of the sun image into two regions using FCM with pixel locations only; pixel intensity only and both features respectively. (f) Segmentation result using FCSI. (g) Segmentation result using FSLI.

Table 3: Error percentages for the dinosaur region \(R_1 \) segmentation in Figure 3.

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Type I</td>
</tr>
<tr>
<td>FCM (location)</td>
<td>15.7643</td>
</tr>
<tr>
<td>FCM (Intensity)</td>
<td>2.0159</td>
</tr>
<tr>
<td>FCM (location & Intensity)</td>
<td>3.2277</td>
</tr>
<tr>
<td>FCSI</td>
<td>11.9585</td>
</tr>
<tr>
<td>FSLI</td>
<td>3.1758</td>
</tr>
</tbody>
</table>

From both the qualitative and quantitative analysis, it can be concluded that for all the test images used (Figures (1)-(3)), the proposed FSLI algorithm obtains considerable improvement in its segmentation performance compared with FCM for all three cases, that is using clustering based on pixel intensity, on pixel location and the combination of the two, as well as in comparison with the original FCSI algorithm.

6. Conclusions

This paper has presented a new algorithm called image segmentation using location and intensity information (FSLI) by applying connectivity, a topological feature and object similarity based on the pixel intensity and surface variation. Both qualitative and quantitative analysis of the results produced by all algorithms has exhibited the considerable improvement of the new algorithm compared with FCM using only pixel locations, only pixel intensity, and a combination of the two as well as the original FCSI algorithm. The main advantage of this algorithm is that it can separate any type of object from an image, to a certain extent. From the experiments, it has also been shown that the proposed FSLI algorithm is insensitive to the values of the thresholds \(T \) and \(T_{\text{max}} \).

Since the new algorithm is based on clustering, it is required that initially the number of clusters to be used has to be specified for this algorithm.

References