Loss of forb diversity in relation to nitrogen deposition in the UK: regional trends and potential controls

How to cite:

For guidance on citations see FAQs.

© 2008 Blackwell Publishing

Version: Accepted Manuscript

Link(s) to article on publisher’s website:
http://dx.doi.org/doi:10.1111/j.1365-2486.2006.01217.x
Loss of forb diversity in relation to nitrogen deposition in the UK:
regional trends and potential controls

CARLY J. STEVENS*†‡, NANCY B. DISE§‡, DAVID J.G. GOWING* and J. OWEN MOUNTFORD†.

* The Open University, Walton Hall, Milton Keynes, MK7 6AA, United Kingdom
† NERC Centre for Ecology and Hydrology, Monks Wood, Huntingdon, Cambridgeshire, PE28 2LS, United Kingdom
‡ Current address: Department of Environmental Sciences, Lancaster University, Lancaster, LA1 1PZ, United Kingdom
§ Department of Environmental and Geographical Sciences, Manchester Metropolitan University, Manchester, M15 GD, United Kingdom
‡Department of Biology, Villanova University, Villanova, PA 19085 USA

Date of receipt:

Key words: C:N, nitrogen deposition, N:P, soil extractable ammonium, species richness, plant nitrogen concentration, grasslands

Corresponding author: Dr Carly Stevens
Department of Environmental Sciences, Lancaster University, Lancaster, LA1 1PZ, United Kingdom.
Fax: 01524 593985
c.stevens@lancaster.ac.uk

Running title: Impacts of nitrogen deposition on acid grasslands.
Abstract

In this study we investigate the impact of nitrogen (N) deposition on the diversity of three different vegetation functional groups – forbs, grasses and mosses – using a field survey of acid grasslands across Great Britain. Our aim is to identify the vegetation types that are most vulnerable to enhanced N deposition, and to shed light on the mechanisms that may be driving N-initiated species changes in the UK. Sixty-eight randomly selected grasslands belonging to the U.K. National Vegetation Classification group U4 (Festuca ovina-Agrostis capillaris-Galium saxatile grassland) were studied along a gradient of atmospheric N deposition ranging from 6 to 36 kg N ha$^{-1}$ yr$^{-1}$. At each site, vegetation was surveyed and samples were taken from the topsoil and subsoil. Above-ground plant material was collected from 3 species: a forb, grass and moss.

Both the species richness and cover of forbs declined strongly with increasing N deposition, from greater than 8 species/20% cover per m2 quadrat at low levels of N to fewer than 2 species/5% cover at the highest N deposition levels. Grasses showed a weak but significant decline in species richness, and a trend toward increasing cover with increasing N input. Mosses showed no trends in either species richness or cover. Most of the decline in plant species richness could be accounted for by the level of ammonium deposition.

Soil KCl-extractable ammonium concentration showed a significant positive correlation with N input, but there was no relationship between N deposition and extractable nitrate. In the soil O/A horizon, there was no relationship between N deposition and %N, and only a very weak positive relationship between the level of N deposition and the C:N ratio. Finally, in the vegetation, there was no relationship
between N deposition and either shoot tissue N concentration or N:P ratio for any of
the three reference species.

Combining our regional survey with the results of published N-addition
experiments provides compelling evidence that there has been a significant decline in
the species richness and cover of forbs across Great Britain, and that the primary
cause is competition due to an increase in the cover of grasses in response to enhanced
deposition of reactive nitrogen, primarily NH$_4^+$.
Introduction

Deposition of atmospheric N compounds, predominantly originating from volatilised animal waste, synthetic fertilisers and burning of fossil fuels, has become a worldwide issue of concern during the last few decades, with the effects of acidification and eutrophication observed in Europe, North and South America, the former Soviet Union, large parts of Asia, and areas of Africa (Bouwman et al., 2002). Between 1860 and the early 1990s atmospheric deposition of NOₓ and NHᵧ worldwide more than trebled, and it is projected that this will nearly double again to 195 Tg N yr⁻¹ by the year 2050 (Galloway et al., 2004). In Europe, the problems of N deposition are widespread, with over half of terrestrial ecosystems affected by eutrophication in 70% of European countries (EMEP, 2000). In the UK, decadal averages show that between 1900 and 2000 total N deposition increased from 0.229 Tg N to 0.402 Tg N. Deposition of both reduced and oxidised N peaked in the 1990s, and is now beginning to decline (Fowler et al., 2004).

Nitrogen pollution has a number of potential effects on semi-natural ecosystems. At very high levels of deposition, ammonium (NH₄⁺) is known to be toxic to plants (Sheppard, 2002); however, even at lower levels, serious effects on vegetation can be observed. These include the soil-mediated effects of acidification and eutrophication (in this context, the enrichment of soils by N compounds that are readily available to plants). Eutrophication can lead to increased leaching of N to waterways (Wright et al., 2001) and changes in the rates of soil microbial processes (Aber et al., 2003) and has the potential to change the plant species composition of sensitive habitats (Burke et al., 1998). Other observed effects of N deposition include increased susceptibility to pests and disease (e.g. increased frequency and severity of heather beetle (Lochmaea suturalis) attacks to common heather (Calluna vulgaris) (Brunsting and...
Heil, 1985)) and an increased susceptibility to environmental stressors (e.g. increased incidence of late winter injury in *C. vulgaris* (Carroll et al., 1999)).

Numerous N-addition experiments in different habitat types have shown the potential for N deposition to impact species richness, soil chemistry and soil microbial processes (e.g. Mountford et al., 1993; Phoenix et al., 2003, Wedin and Tilman 1996). Determining that these changes are actually occurring, and that they are due to nitrogen pollution, has been more problematic. In the Netherlands, serious effects of N deposition have been inferred, especially the invasion and eventual domination of heathlands by nitrophilous grass species such as purple moor grass (*Molinia caerulea*) (Heil and Diemont, 1983). Supporting the implication of N in these species changes, soil solution N levels in grass-dominated heaths have been shown to be much higher than in heather-dominated ones (Roelofs, 1986). In Great Britain, Smart et al. (2004) identified increased cover-weighted Ellenberg fertility scores of semi-natural grasslands and heaths/bogs in areas with high rates of NH$_3$ deposition. Finally, Stevens et al. (2004) showed a strong, significant negative relationship between total inorganic N deposition and plant species richness in acid grasslands across Great Britain, and determined that no other likely driver of diversity could explain this pattern.

Here we analyse the data described in Stevens et al. (2004) in more detail to explore trends in grass, forb and moss species richness, tissue chemistry, and soil chemistry in relation to N deposition, and we explicitly examine the separate effects of ammonium and nitrate. Our aims are to (1) follow the signal of nitrogen in deposition as it passes through the soil and vegetation, and ultimately to its impact on the community composition, (2) identify the vegetation types that are most vulnerable to enhanced atmospheric N deposition, (3) evaluate the usefulness of vegetation- or soil-
N enrichment as indicators of N deposition and ecosystem N status, and (4) shed light on the mechanisms that may be driving nitrogen-initiated species changes in the UK and other parts of the world.

Materials and methods

Field Methods

A database of UK grasslands belonging to the British National Vegetation Classification community U4 (*Festuca ovina-Agrostis capillaris-Galium saxatile* grassland) (Rodwell, 1992) was compiled using information supplied by English Nature, the Countryside Council for Wales, and Scottish Natural Heritage. U4 grasslands are acid grasslands typical of upland areas, with *Agrostis capillaris*, *Anthoxanthum odoratum*, *Festuca ovina*, *Galium saxatile* and *Potentilla erecta* as constant species. They are predominantly used for rough grazing by sheep and are common across much of the UK with the exception of the southeast. These grasslands are akin to the *Violion caninae* grasslands found throughout Europe. The soils of U4 grasslands are very variable in their organic matter content and moisture status, ranging from soils with a high peat content through to sands.

From this database, sites of insufficient size and those that were not readily accessible were eliminated. A stratified random sample of 68 grasslands was selected to provide a mix of sites covering low (less than 10 kg N ha\(^{-1}\) yr\(^{-1}\), 9 sites), medium (10-25 kg N ha\(^{-1}\) yr\(^{-1}\), 27 sites) and high (greater than 25 kg N ha\(^{-1}\) yr\(^{-1}\), 32 sites) rates of N deposition. N deposition values were modelled by the Centre for Ecology and Hydrology (CEH), Edinburgh using the CEH National Atmospheric Deposition Model (Smith *et al.*, 2000). This provides total inorganic N deposition, wet and dry N
deposition, and oxidised and reduced N deposition at a 5 km resolution. A note was made of any point sources in the immediate area of the field locations that could contribute additional N deposition.

The sites ranged geographically from Exmoor, southwest England to Altnaharra in northern Scotland and showed a great deal of variability. Mean altitude, for example, ranged from 15 m above sea level to 692 m above sea level, and mean annual temperature ranged from 6.6 °C to 10.6 °C (Appendix 1). Total inorganic N deposition ranged from 6.2 kg N ha\(^{-1}\) yr\(^{-1}\) to 36.3 kg N ha\(^{-1}\) yr\(^{-1}\). Further details on the range of conditions at the sites can be found Appendix 1.

The grasslands were visited between May and September of 2002 and 2003. At each site a one-hectare area consisting of more than 50% U4 grassland was delineated. Within the U4 grassland in this area, 5 randomly located 2 × 2 metre quadrats were placed. Within each quadrat, the percentage cover was estimated by eye for each species present and soil samples were collected. Subsoils were sampled using a 5 cm diameter Dutch auger at a depth of 30–40 cm, taken from the centre of the quadrat. Where the soils were not deep enough to permit this, the samples were collected at the maximum possible depth. Topsoil samples were collected from two opposing corners of the quadrat. These were taken from the top 5 cm of the A horizon or, where there was no A horizon apparent, close to the surface, within the O horizon. Samples were air-dried and stored for fewer than three months prior to analysis.

Samples of all above-ground plant material (approximately 30g) were collected for 3 species – *Agrostis capillaris*, *Galium saxatile* and *Rhytidium squarrosus*. These species were selected because they represent a common and abundant grass, herb and moss, respectively. All samples were collected from within the one-ha sampling area, avoiding any patches that appeared visually affected by
animal latrines or animal feed bought onto the sites. Samples were collected from within or as close as possible to the randomly located quadrats.

A full description of each of the sites visited was made, including UK national grid reference and altitude determined using a global positioning system (GPS). Aspect and slope were also estimated. Data on mean annual rainfall, actual evapotranspiration, potential evapotranspiration and mean monthly maximum soil moisture deficit were obtained from the MORECS database (Thompson et al., 1981). Temperature data averaged for the years 1971-2000 were obtained from the UK Meteorological Office (UK Met. Office, 2004). Grazing was estimated on a scale of 1 to 3 where 1 was high intensity and 3 low intensity, and assessed based on evidence from vegetation height and amount of animal faecal material. The presence of enclosures (e.g. fences, walls or hedges) was also noted. Estimated rates of sulphur deposition were provided by the Centre for Ecology and Hydrology, Edinburgh.

Laboratory methods

All soil samples were air dried and ground to <2 mm prior to analysis. For carbon, nitrogen, and sulphur content, the soil samples were ground to a fine powder using a planetary ball mill, with 0.2 g of sample thoroughly mixed with 1 g of Comcat accelerator in a porcelain boat. C and N concentration of the soils was then determined using a LECO CNS-2000 elemental analyser.

For measurement of soil extractable ammonium and nitrate ion concentration, samples were bulked to give one 10 g composite sample per site. Samples were then leached with 100 ml 1 M KCl in leaching tubes. The extracted solution was analysed for ionic concentration using a Dionex DX100 ion chromatograph with a Ion Pac
CS16 column for cations and a IonPac AS9-HC column for anions. Ion concentrations were recorded in mg L\(^{-1}\).

Plant samples were washed in deionised water after collection and oven dried at 55\(^\circ\)C for 3 days. N concentration was analysed using a LECO CNS-2000 elemental analyser as described above for soil samples. Plant tissue phosphorus (P) concentration was determined using a dry ashing extraction method (Chapman and Pratt, 1961; Ryan et al., 2001) followed by a standard Barton colour complex (MAFF, 1986). Absorbance was determined using a Heios Thermo Spectropic colorimeter at a wavelength of 410 nm.

A correction for seasonal variation was applied to the tissue element concentrations by collecting plant tissue samples from a single field location (Stockgrove Country Park, Bedfordshire) throughout the growing season. The species composition of this site was representative of the surveyed sites, and the same sampling area and methods were used as in the surveyed sites. Levels of N and P in this plant material were used to make adjustments to all the results from the surveyed sites according to day degrees on the date of sampling (ranging between 284.1 and 1026.5 day degrees depending on survey date and location). This only resulted in small adjustments to the tissue element concentrations in *Agrostis* and *Galium* (range in the percent difference between the actual and adjusted element concentrations 0.24 – 4.09%). There was no significant change in the tissue N or P content of *Rytidiadelphus* across the growing season. Although there may be differences in the range of seasonal variation across the sites, this was not feasible to measure, and the use of a single representative site provides us with a reasonable estimate.
Data analysis

Stepwise multiple regression was used to create empirical models between measures of species richness and all other likely drivers of biodiversity for which data could be collected (Appendix 1). Regression analysis quantifies the amount of variation in a dependent variable that is explained by one or several correlates. Stepwise regression builds a model from those variables that together explain the most variability in the dependent variable, but are themselves statistically independent. The input data (Appendix 1) and resulting models were examined for any significant violations of the assumptions of the technique. Both linear and non-linear functions were evaluated, and significance levels were set at p<0.05.

Results

Species richness

Of the 20 variables entered in the stepwise regression, the most significant correlate to species richness is a negative relationship with the total inorganic N deposition ($r^2=0.55$), but this relationship is essentially entirely due to NH$_x$ deposition ($r^2=0.54$, p<0.001; Figure 1A). Species richness is also correlated to NO$_x$ deposition both linearly ($r^2=0.29$, p<0.001) and, somewhat more strongly, in a negative exponential relationship ($r^2=0.33$, p<0.001; Figure 1B), reflecting a lower rate of change in species richness at higher levels of NO$_x$ deposition (Figure 1B). After accounting for N deposition, the most significant regional-scale variable correlated to species diversity is soil pH, which contributes an additional 5% toward explaining the variability in species richness (Stevens et al. 2004).
The patterns shown in Figure 1 are driven primarily by a loss of forb cover and richness (Figures 2A and 2B), both of which decline linearly with increased N deposition (cover: $r^2 = 0.32$, $p<0.01$; richness: $r^2 = 0.47$, $p<0.01$). Forb cover and richness decline from means of ca 20% and 8 species per quadrat, respectively, at the lowest N deposition levels, to less than 5% and 1-2 species at highest N deposition sites. In particular, the forbs *Plantago lanceolata* (ribwort plantain), *Campanula rotundifolia* (harebell), and *Euphrasia officinalis* (eyebright), together with the shrub *Calluna vulgaris* (heather) and the moss *Hylocomium splendens* are consistently reduced in the lower-diversity plots. Grass species richness declines slightly with increasing N deposition (Figure 2D) ($r^2 = 0.16$, $p<0.01$) but grass cover shows an increasing trend, although this is not significant (Figure 2C) ($r^2 = 0.05$, $p<0.08$). There is no significant relationship between N deposition and bryophyte cover or richness (Figures 2E and F).

It should be noted that, by sampling areas that currently conform to the U4 specification, we are excluding areas that may have already converted to another vegetation community. Thus, our calculation of the rate of species richness change with N deposition can be considered a minimum estimate for these grasslands.

Soil chemistry

There was no significant relationship between total inorganic N deposition and topsoil %N, and only a very weak positive relationship with C:N ($r^2=0.08$, $p<0.05$; Figure 3A). Soil exchangeable nitrate did not show any significant relationship with total NO$_x$ deposition or wet deposition of nitrate. There was a significant linear relationship between soil exchangeable NO$_3^-$ and total inorganic N deposition ($r^2 =$
0.12, p<0.01); however, this relationship was driven by only 3 points. When these were removed, N deposition and soil solution NO$_3^-$ were uncorrelated.

Soil exchangeable ammonium shows a far clearer relationship with N deposition. Soil ammonium is significantly positively related to wet deposition of NH$_4^+$ ($r^2 = 0.36$, p<0.01) total NH$_x$ deposition ($r^2 = 0.34$, p<0.01), and, most strongly, to total inorganic N deposition ($r^2 = 0.39$, p<0.01) (Figure 3B). The pH of both topsoil and subsoil is also significantly negatively related to N deposition (Figure 3C), although pH is most strongly related to the combined deposition of N and S (acid deposition). Soil pH is also very likely influenced by site factors such as previous land use, and soil parent material and organic matter content.

Plant tissue chemistry

There was no significant relationship between total N deposition and tissue N concentration corrected for day degrees for any of the three species tested (Figure 4). There were also no significant relationships if uncorrected data are used. In addition, none of the species showed any significant relationship between the tissue N:P ratio and total inorganic N deposition (Figure 5).

Grazing can affect the relationship between N deposition and tissue N, as regrowth is comprised of young, actively growing shoots. Consequently, we specifically considered grazing as an explanatory variable for regional variation in tissue N. There were no significant relationships between tissue N concentration, P concentration or N:P ratio and grazing intensity, or between these variables and N deposition with grazing intensity forced into the regression equation. However, our estimates of grazing intensity are subjective and it is possible that a stronger regional
relationship between N deposition and tissue N or N:P may exist within grasslands that are known to have little grazing pressure.

Discussion

Species richness

Both empirical and experimental evidence implicate inorganic N deposition, especially NH$_4^+$, in a decline in the species richness of forbs in acid grasslands across Great Britain. Since nitrogen is the limiting nutrient for plant growth in many terrestrial ecosystems, an excess of reactive N to these ecosystems may reduce plant diversity through favouring species adapted to quick exploitation of available nutrients. Nitrogen may also decrease diversity through factors such as nutrient imbalance (e.g. inducing P limitation), soil acidification, or increased susceptibility to diseases or pests (Phoenix et al., 2003; Power et al., 1998; Brunsting and Heil, 1985).

In our survey we did not note enhanced pest-related damage in the low-diversity plots, nor could we find any clear indications of nutrient limitation shifts with changing N deposition. Our results showed that soil pH declines in relation to the level of acid deposition, and species richness is higher in higher-pH soils at any level of N deposition, so acidification may play a role in observed species richness differences. This has been clearly shown in several long-term field manipulation experiments using (NH$_4$)$_2$SO$_4$ (Carroll et al., 2003; Morecroft et al., 1994; Johnson et al., 1986). However, the significant relationship between N deposition and soil exchangeable NH$_4^+$, the strong decline in both richness and cover of forbs in relation to other functional groups, and the increased trend in cover of grasses with increasing N deposition, all suggest that the main reason for the decline in overall species
richness is competition due to ecosystem N enrichment, resulting in increased dominance of fewer species.

Most of the forbs in this study were either low growing, prostrate or rosette in form and therefore not adapted to compete for light. In addition they often do not show the same rate of growth in response to enhanced nutrients that many grasses are capable of. Consequently, at high N deposition, forbs may become light-limited due to shading by plants with a more vigorous growth response. The forbs identified as consistently reduced in the low-diversity plots are, together with heather, either indicators of infertile conditions (*Campanula*, *Euphrasia* and *Calluna*), are recognised as intolerant of competition with vigorous grasses (*Campanula*), or have been shown to decline under experimental N applications (*Plantago* and *Calluna*) (reviewed in Stevens et al. 2004).

Although grasses also showed a decline in species richness, the positive trend in total grass cover with increasing N deposition suggests increased dominance of a few species. Stevens et al (2004) identified *Nardus stricta* as a species that was more abundant in high-N deposition sites, but the weak overall trend of increasing grass cover with increasing N input is likely due to different species increasing in different locations, and/or several species increasing slightly in cover.

Bryophytes as a group show no relationship to N deposition, although this is because some species (*e.g.* *Hylocomium splendens*) are reduced at high N deposition levels whereas *Hypnum cupressiforme* was positively associated with N deposition (Stevens et al., 2004). Although mosses in general are frequently identified as being sensitive to N inputs (*e.g.* Gordon et al., 2001), *Hypnum* is relatively pollution-tolerant (Hallinback, 1994), and it is likely that this species has increased at the expense of more sensitive mosses.
Soil chemistry

There is essentially no relationship between the N concentration in the topsoil (as %N or C:N) and total inorganic N deposition. One might expect an increase in soil N with increasing N deposition, although along the wide gradient studied the soils varied considerably in their type, structure, and land use history, all of which affect the N content. The soils also have very variable organic matter contents, which in itself causes major differences in the N concentration, since most of the soil N is found in organic matter.

These findings are similar to those of Falkengren-Grerup et al. (1998) who found no consistent changes in the soil N concentration in woodlands (5 cm depth) at different levels of N deposition, and with Dise et al. (1998) who showed no relationship between N deposition and O-horizon C:N in forests across Europe when regional climate differences were accounted for. Several experimental N-addition studies have also failed to show any relationship between soil N concentration or C:N and N application rate (e.g. Morecroft et al. 1994, Magill et al. 2004, Moldan et al. in review). Morecroft et al. 1994 suggest increased plant uptake, leaching or denitrification as potential reasons for a lack of response in soil organic matter N concentration to N input, although later work on the same sites has dismissed leaching as a potential cause (Phoenix et al., 2003). It is possible that there is simply insufficient time for N to detectably accumulate in the soil pool as a result of experimental additions, and, in cases where there is no change in C:N, that C may accumulate with N.

The poor relationship between soil extractable nitrate and deposition of NO$_x$, NO$_3^-$, or total inorganic N is likely to be due in part to rapid plant uptake combined
with the mobility and lability of any excess nitrate (Matson et al., 2002). Nitrate is very mobile in the soil and so may be rapidly leached to lower soil horizons, with microbial immobilisation preventing the nitrate being lost from the system entirely. Conversely, the positive correlation between N deposition and soil extractable ammonium (Figure 3B) may reflect the greater storage of NH$_4^+$ in the soils (Buchmann et al., 1996). These results, showing retention of NH$_4^+$ in the topsoil but not of NO$_3^-$, are consistent with N addition experiments (Emmett et al., 1995; Buchmann et al., 1996; Magill et al., 1997; Stuanes and Kjønaas, 1998).

Plant tissue chemistry

None of the three species examined showed a significant correlation between N deposition and tissue N concentration. Since both soil solution chemistry and species richness change with N deposition, it is surprising that plant tissue chemistry does not. This casts doubt on the usefulness of tissue nutrient concentrations as bioindicators of either N deposition or ecosystem N status (e.g. Pitcairn et al. 2003). Increases in tissue N with experimental applications of N have been shown in Calluna vulgaris (Carroll et al., 1999), Vaccinium vitis-idaea, Erica cinerea, Eriophorum vaginatum (Leith et al., 1999), some mosses (Pitcairn et al., 1998, Gordon et al, 2001), pine and hardwood tree species (Magill et al., 1997) and some grasses and forbs (Morecroft et al., 1994, Carroll et al., 2003). However, many of these responses are to short-term applications using relatively large doses, rather than chronic low-level N deposition. In addition, several experimental additions have failed to show increases in tissue N with N addition. Uren et al. (1997) found significant differences in the shoot N concentration of Calluna vulgaris at application rates of 7.7 and 15.4 kg N ha$^{-1}$ yr$^{-1}$ only in the first year of addition. No statistically significant results were found in the
subsequent 3 years of the experiment. Pearce and van der Wal (2002) found no increase in tissue N concentration of *Racomitrium lanuginosum* by the end of the growing season in which N was applied.

In a paper explicitly linking regional-gradient with experimental N addition studies, Dise and Gundersen (2004) found that the tissue N concentration of conifer needles showed a ‘rapid and dynamic’ response to N deposition, changing in response to both increasing and decreasing N deposition within 2-3 years. Thus, foliar N may exhibit a plastic response to short-term levels of N deposition, which can vary greatly from year to year. Non-woody plants would likely be even more responsive to short-term fluctuations in N deposition. It is also likely that some plants can rapidly use excess N for increased growth, particularly in N-limited systems. This is supported by optimal partitioning theory which suggests that plants aim to equalise nutrient exchange ratios in order to maximise the efficiency of resource use (Bloom *et al.*, 1985). Biomass measurements would provide confirmation of this hypothesis and are a particularly important area of future study. Both possibilities – plasticity of N accumulation, and increased growth – would argue against the use of foliar N as an indicator of long-term N deposition and ecosystem N enrichment.

There was also no significant correlation between foliar N:P ratio and N deposition for any of the 3 species examined. The N:P ratio of plant tissues has been suggested as an indicator of nutrient limitation (Koerselman and Meuleman, 1996, Gusewell and Koerselman, 2002). P-limited species would be expected to have a higher N concentration and a lower P concentration, and hence a higher N:P ratio, than N-limited or co-limited species. An N:P mass ratio of greater than 16 has been suggested to indicate P-limited vegetation, one of 13.5–14 co-limitation and a ratio less than 14 N-limitation (Gusewell and Koerselman, 2002).
On this basis, Agrostis was P-limited at 16% of the sites, 19% of the sites were P-limiting for Galium, and 24% were P-limiting for Rhytidiadelphus. However, the inferred P limitation occurred across the full range of N deposition (ca 7-35 kg N ha\(^{-1}\) yr\(^{-1}\)) and was not related to the N deposition flux, and there was little agreement among the three methods on the nutrient that was identified as limiting at any one site. Thus, this study also does not support the use of tissue N to P ratios as an indicator of N deposition, N status, or nutrient limitation on a regional scale. This lack of a relationship between tissue N:P and N deposition could be partially due to the differences in the soils encountered in this study and their capacities to retain N in different forms for potential availability to plants.

Conclusions

The primary cause for the decline in the species richness and cover of forbs detected across Great Britain as a function of N deposition is probably competition brought on by an increase in the cover of grasses. We are able to follow the signal of nitrogen enrichment in precipitation into the soil via enhanced extractable NH\(_4^+\) and reduced pH, although soil solid organic matter chemistry (e.g. %N, C:N) and foliar chemistry were unrelated to input N levels. This may be due to wide variations in soil type and land-use history across the survey sites.

Taken together with experimental N manipulations on acid grassland which show declines in the same nutrient-sensitive species, the results of this survey provide compelling evidence that changes in plant community and soil chemistry as a result of elevated N deposition are actually occurring in the UK. In particular, less competitive forbs appear to be suffering at the expense of more vigorous, nitrophilic grasses in areas receiving chronically enhanced NH\(_4^+\) deposition, which occurs over a
widespread area of Great Britain. It is likely that such a reduction in the diversity of
forbs, is occurring in other N-impacted areas of the world as well.

Acknowledgements

C. Stevens was funded by the Open University and the Centre for Ecology and
Hydrology. The authors are grateful to the Centre for Ecology and Hydrology,
Edinburgh for providing modelled values of nitrogen and sulphur deposition, and to
English Nature, the Countryside Council for Wales, Scottish Natural Heritage, and all
landowners who permitted access to the land. N. Dise would like to thank Villanova
University for hosting her as a Visiting Scientist during a sabbatical leave. We also
acknowledge the helpful comments of two anonymous referees.

References

Aber JD, Goodale CL., Ollinger SV, Smith M, Magill A, Martin ME, Hallett R A,
Stoddard JL (2003) Is nitrogen deposition altering the nitrogen status of northeastern

Bloom AJ, Chapin FS, Mooney HA (1985) Resource limitation in plants – an

Bouwman AF, van Vuuren DP, Derwent RG, Posch M (2002) A global analysis of
acidification and eutrophication of terrestrial ecosystems. *Water, Air and Soil
Pollution*, **141**, 349-382.

Johnson AE, Goulding KWT, Poulton PR (1986) Soil acidification during more than 100 years under permanent grassland and woodland at Rothamsted. *Soil Use and Management*, 2, 3-10.

Moldan F, Kjønaas OJ, Stuanes AO, Wright RF. Increased nitrogen in runoff and soil following thirteen years of experimentally increased nitrogen deposition to a coniferous-forested catchment at Gårdsjön, Sweden. *Environmental Pollution*, in review.

Figure captions

Figure 1 Declining species richness with increasing A) NH$_3$ deposition ($r^2 = 0.54$) and B) NO$_x$ deposition ($r^2 = 0.29$).

Figure 2 Changes with increasing total inorganic nitrogen deposition in A) forb cover ($r^2 = 0.47$) and B) forb richness ($r^2 = 0.52$), C) grass cover ($r^2 = 0.16$) and D) grass richness ($r^2 = 0.05$; P<0.08) and E) bryophyte cover and F) bryophyte richness.

Figure 3 A) O/A horizon C:N ($r^2 = 0.08$), B) KCl-extractable ammonium ($r^2 = 0.39$) and C) topsoil pH (A horizon, in H$_2$O) ($r^2 = 0.39$) in relation to total inorganic nitrogen deposition.

Figure 4 Tissue N concentration corrected for day degrees versus total inorganic N deposition for A) *Galium saxatile*, B) *A. capillaris* and C) *R. squarrosus* (no correction for day degrees needed for *R. squarrosus*).

Figure 5 Tissue N:P ratio versus total inorganic N deposition for A) *Galium saxatile*, B) *A. capillaris* and C) *R. squarrosus*.
Figure 1

![Graph A](image1.png)

Species richness (mean number of species per quadrat) vs. NH$_3$ deposition (kg N ha$^{-1}$ yr$^{-1}$)

![Graph B](image2.png)

Species richness (mean number of species per quadrat) vs. NO$_x$ deposition (kg N ha$^{-1}$ yr$^{-1}$)
Figure 2.

Forbs

Grasses

Bryophytes

Total inorganic nitrogen deposition (Kg N ha$^{-1}$ yr$^{-1}$)
Figure 3.

A. Topsoil C:N vs. Total inorganic N deposition (kg N ha\(^{-1}\) yr\(^{-1}\)).

B. Soil exchangeable NH\(_4\) vs. Total inorganic N deposition (kg N ha\(^{-1}\) yr\(^{-1}\)).

C. Topsoil pH vs. Total inorganic N deposition (kg N ha\(^{-1}\) yr\(^{-1}\)).
Figure 4

![Graph A](image1.png)

![Graph B](image2.png)

![Graph C](image3.png)

Corrected N (mg/g) vs. Total inorganic N deposition (kg N ha\(^{-1}\) yr\(^{-1}\))

Graph A

Graph B

Graph C
Figure 5

A

B

C

Total inorganic N deposition (kg N ha\(^{-1}\) yr\(^{-1}\))
Appendix 1. Variables used in stepwise regressions on plant species richness. Where significant, the direction of simple correlations to species richness are shown (+ or -).

<table>
<thead>
<tr>
<th>Variable</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total nitrogen deposition (kg N ha$^{-1}$ yr$^{-1}$)</td>
<td>6.2 – 36.3</td>
</tr>
<tr>
<td>Total deposition NH$_3$ + NH$_4^+$ (kg N ha$^{-1}$ yr$^{-1}$)</td>
<td>2.8 – 31.2</td>
</tr>
<tr>
<td>Total deposition NO$+ NO_2^- + NO_3^-$ (kg N ha$^{-1}$ yr$^{-1}$)</td>
<td>2.2 – 12.6</td>
</tr>
<tr>
<td>Sulphate deposition (kg SO$_4^{2-}$ ha$^{-1}$ yr$^{-1}$)</td>
<td>6.6 – 28.7</td>
</tr>
<tr>
<td>Acid deposition (total N + total S, kg ha$^{-1}$ yr$^{-1}$)</td>
<td>13.0 – 61.4</td>
</tr>
<tr>
<td>Topsoil pH (A horizon)</td>
<td>3.7 – 5.5</td>
</tr>
<tr>
<td>Subsoil pH (30-40 cm)</td>
<td>3.3 – 5.7</td>
</tr>
<tr>
<td>Mean annual temperature ($^\circ$C)</td>
<td>6.6 – 10.6</td>
</tr>
<tr>
<td>Mean annual precipitation (mm)</td>
<td>594 - 3038</td>
</tr>
<tr>
<td>Mean annual actual evapotranspiration (mm)</td>
<td>35.7 – 49.3</td>
</tr>
<tr>
<td>Mean annual potential evapotranspiration (mm)</td>
<td>35.8 – 54.3</td>
</tr>
<tr>
<td>Mean annual soil moisture deficit (mm)</td>
<td>3.4 – 51.4</td>
</tr>
<tr>
<td>Altitude (m)</td>
<td>15- 692</td>
</tr>
<tr>
<td>Litter cover (%)</td>
<td>0 - 24</td>
</tr>
<tr>
<td>C:N (by mass)</td>
<td>13.3 – 30.2</td>
</tr>
<tr>
<td>%N (by mass)</td>
<td>0.1 – 1.6</td>
</tr>
<tr>
<td>Slope ($^\circ$)</td>
<td>0 - 60</td>
</tr>
<tr>
<td>Aspect ($^\circ$)</td>
<td>0 - 315</td>
</tr>
<tr>
<td>Grazing intensity (visual inspection, scale 1-3)</td>
<td>1 - 3</td>
</tr>
<tr>
<td>Enclosure (presence or absence)</td>
<td>Presence or absence</td>
</tr>
</tbody>
</table>