The Open UniversitySkip to content
 

Understanding the kinetics and dynamics of radiation-induced reaction pathways in carbon monoxide ice at 10 K

Jamieson, C. S.; Mebel, A. M. and Kaiser, R. I. (2006). Understanding the kinetics and dynamics of radiation-induced reaction pathways in carbon monoxide ice at 10 K. Astrophysical Journal Supplement Series, 163(1) pp. 184–206.

DOI (Digital Object Identifier) Link: http://dx.doi.org/10.1086/499245
Google Scholar: Look up in Google Scholar

Abstract

Carbon monoxide is the second most abundant molecule on icy grains in the interstellar medium. It also exists on Pluto, Triton, comets, and possibly in other icy bodies of the outer solar system like Kuiper Belt objects. With the intense radiation fields that permeate virtually all unprotected regions of space, carbon monoxide ices can be processed through energetic particle bombardment (planetary magnetospheric particles, solar wind, Galactic cosmic ray particles, and UV photons). In the present study we have investigated the effects by condensing a 1 mu m layer of carbon monoxide ice on a substrate at 10 K and irradiated the sample with energetic (keV) electrons. These simulate the energetic electrons trapped in magnetospheres of planets and reproduce the irradiation effects of typical Galactic cosmic ray particles. A series of new carbon-chain (C-3, C-6) and carbon oxide species were observed including the linear isomers of C2O, C3O, C4O, C5O, C6/7O, CO2, C3O2, C4O2, and C5O2. A reaction model was proposed that outlines different reaction pathways to each of these products. Using this model, the kinetics of each route of reaction was quantified, and from this, the mechanisms and dynamics of the reactions can be understood. This work should aid in the astronomical detection of new molecular species in solar system ices as well as building up a comprehensive reaction model to describe the chemical inventory of ices on interstellar dust grains.

Item Type: Journal Article
ISSN: 1538-4357
Academic Unit/Department: Science > Physical Sciences
Item ID: 16035
Depositing User: Users 8955 not found.
Date Deposited: 07 May 2009 10:46
Last Modified: 28 Jan 2014 10:43
URI: http://oro.open.ac.uk/id/eprint/16035
Share this page:

Actions (login may be required)

View Item
Report issue / request change

Policies | Disclaimer

© The Open University   + 44 (0)870 333 4340   general-enquiries@open.ac.uk