The Open UniversitySkip to content
 

Fatigue crack propagation: in situ visualization using X-ray microtomography and 3D simulation using the extended finite element method

Ferrie, Emilie; Buffiere, Jean-Yves; Ludwig, Wolfgang; Gravouil, Anthony and Edwards, Lyndon (2006). Fatigue crack propagation: in situ visualization using X-ray microtomography and 3D simulation using the extended finite element method. Acta Materialia, 54(4) pp. 1111–1122.

DOI (Digital Object Identifier) Link: http://dx.doi.org/10.1016/j.actamat.2005.10.053
Google Scholar: Look up in Google Scholar

Abstract

The propagation of a semi-elliptical crack in the bulk of an ultrafine-grained Al-Li alloy has been investigated using synchrotron radiation X-ray microtomography. In this material, the studied crack, despite its small dimension, can be considered as "microstructurally long" and described in the frame of the linear elastic fracture mechanics. The extended finite element method is used to calculate the stress intensity factors along the crack front taking into account the three-dimensional geometry extracted from the tomographic images. For the same nominal value of the stress intensity factor range, crack propagation is faster in the bulk than at the surface. The observed anisotropy is attributed to the variation of the closure stress along the crack front between surface and bulk. The experimentally observed fatigue crack propagation is compared to numerical simulations. Good agreement is found when a linear variation of closure stress along the crack front is taken into account in the "3D crack propagation law" used for the simulation. (c) 2005 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Item Type: Journal Article
Copyright Holders: 2005 Acta Materialia Inc.
ISSN: 1359-6454
Keywords: fatigue crack propagation; extended finite element method; synchrotron radiation; microtomography; crack closure
Academic Unit/Department: Mathematics, Computing and Technology
Item ID: 16014
Depositing User: Users 8955 not found.
Date Deposited: 13 May 2009 09:24
Last Modified: 13 Feb 2014 10:36
URI: http://oro.open.ac.uk/id/eprint/16014
Share this page:

Altmetrics

Scopus Citations

Actions (login may be required)

View Item
Report issue / request change

Policies | Disclaimer

© The Open University   + 44 (0)870 333 4340   general-enquiries@open.ac.uk