Copy the page URI to the clipboard
Widatallah, H. M.; Al-Rawas, A. D.; Johnson, C.; Al-Harthi, S. H.; Gismelseed, A. M.; Moore, E. A. and Stewart, S. J.
(2009).
DOI: https://doi.org/10.1166/jnn.2009.dk11
Abstract
The influence of mechanical milling and subsequent sintering of a 2:1 molar mixture of SrCO3 and α-Fe2O3 on the formation of SrFeO3−δ pervoskite-related nanocrystalline particles is investigated. The structural evolution during the formation process is systematically investigated using X-ray diffraction, thermal analysis, X-ray photoelectron spectroscopy and Mössbauer spectroscopy. Premilling the mixture in air for 120 h leads to the incorporation of Sr2+ in the α-Fe2O3 crystal structure thus facilitating the formation of a 2:1 nanocrystalline mixture of SrFeO3 and SrFeO2.875 by sintering the pre-milled mixture in air at 800 °C (12 h). This temperature is ∼300 °C lower than those at which SrFeO3−δ phases are synthesized by the conventional ceramic techniques. Pre-milling the precursors was found to result in a smaller oxygen deficiency (δ) relative to conventional ceramic synthesis of SrFeO3−δ. Rietveld refinement of the X-ray diffraction shows the interatomic distances in the resulting SrFeO2.875 nanocrystalline phase to be slightly different from those of the conventionally prepared bulk leading, in turn, to a crystal structure with tilted polyhedral cationic sites. This structural distortion is related to both small-size and surface effects in the nanoparticles that have no counterparts in the corresponding bulk material. The surface structure of the attained SrFeO3−δ nanocrystalline particles shows a significant partial reduction of Fe4+ to Fe3+ due to ambient conditions and the presence of an appreciable amount of SrCO3 as well.
Viewing alternatives
Metrics
Public Attention
Altmetrics from AltmetricNumber of Citations
Citations from DimensionsItem Actions
Export
About
- Item ORO ID
- 15822
- Item Type
- Journal Item
- ISSN
- 1533-4880
- Academic Unit or School
-
Faculty of Science, Technology, Engineering and Mathematics (STEM) > Life, Health and Chemical Sciences
Faculty of Science, Technology, Engineering and Mathematics (STEM) - Copyright Holders
- © 2009 Unknown
- Depositing User
- Elaine Moore