Copy the page URI to the clipboard
Leblanc, F.; Langlais, B.; Fouchet, T.; Barabash, S.; Breuer, D.; Chassefière, E.; Coates, A.; Dehant, V.; Forget, F.; Lammer, H.; Lewis, S.; Lopez-Valverde, M.; Mandea, M.; Menvielle, M.; Pais, A.; Paetzold, M.; Read, P.; Sotin, C.; Tarits, P. and Vennerstrom, S.
(2009).
DOI: https://doi.org/10.1089/ast.2007.0222
Abstract
In this paper, we summarize our present understanding of Mars' atmosphere, magnetic field, and surface and address past evolution of these features. Key scientific questions concerning Mars' surface, atmosphere, and magnetic field, along with the planet's interaction with solar wind, are discussed. We also define what key parameters and measurements should be performed and the main characteristics of a martian mission that would help to provide answers to these questions.
Such a mission—Mars Environment and Magnetic Orbiter (MEMO)—was proposed as an answer to the Cosmic Vision Call of Opportunity as an M-class mission (corresponding to a total European Space Agency cost of less than 300 M€). MEMO was designed to study the strong interconnection between the planetary interior, atmosphere, and solar conditions, which is essential to our understanding of planetary evolution, the appearance of life, and its sustainability.
The MEMO main platform combined remote sensing and in situ measurements of the atmosphere and the magnetic field during regular incursions into the martian upper atmosphere. The micro-satellite was designed to perform simultaneous in situ solar wind measurements. MEMO was defined to conduct:
• Four-dimensional mapping of the martian atmosphere from the surface up to 120 km by measuring wind, temperature, water, and composition, all of which would provide a complete view of the martian climate and photochemical system;
• Mapping of the low-altitude magnetic field with unprecedented geographical, altitude, local time, and seasonal resolutions;
• A characterization of the simultaneous responses of the atmosphere, magnetic field, and near-Mars space to solar variability by means of in situ atmospheric and solar wind measurements.
Viewing alternatives
Metrics
Public Attention
Altmetrics from AltmetricNumber of Citations
Citations from DimensionsItem Actions
Export
About
- Item ORO ID
- 15735
- Item Type
- Journal Item
- ISSN
- 1557-8070
- Keywords
- Mars; future space mission; solar wind; atmosphere; magnetic field; surface
- Academic Unit or School
-
Faculty of Science, Technology, Engineering and Mathematics (STEM) > Physical Sciences
Faculty of Science, Technology, Engineering and Mathematics (STEM) - Research Group
- ?? space ??
- Copyright Holders
- © 2009 Mary Ann Liebert, Inc.
- Depositing User
- Astrid Peterkin