The Open UniversitySkip to content

Recent low-latitude freeze-thaw on Mars

Page, David P. (2007). Recent low-latitude freeze-thaw on Mars. Icarus, 189(1) pp. 83–117.

DOI (Digital Object Identifier) Link:
Google Scholar: Look up in Google Scholar


Outside polar latitudes, features corresponding to surface thaw have yet to be identified on Mars. The youthful gully landforms observed at mid-high latitude [Malin, M., Edgett, K., 2000. Science 288, 2330-2335] are the nearest candidate, but the source (and nature) of the gully carving agent remains controversial [e.g., Musselwhite, D.S., Swindle, T.D., Lunine, J.I., 2001. Geophys. Res. Lett. 28, 1283-1285; Mellon, M.T., Phillips, R.J., 2001. J. Geophys. Res. 106, 1-15; Knauth, L.P., Burt, D.M., 2002. Icarus 158, 267-271; Costard, F., Forget, F., Mangold, N., Peulvast, J.P., 2002. Science 295, 110-113; Christensen, P.R., 2003. Nature 422, 45-48; Treiman, A.H., 2003. J. Geophys. Res. 108]. At higher obliquity than the present epoch, near-surface ground ice should be present globally [Mellon, M.T., Jakosky, B.M., 1995. J. Geophys. Res. 100 (E6), 11781-11799], populated by condensation of atmospheric water vapour in the top few metres of the regolith, or emplaced as dusty ice sheets reaching down towards the equator. The latitudinal restriction of these gullies to regions poleward of +/- 30 degrees appears to argue against a thaw component to their formation-since ground ice is present and stable at all latitudes at high obliquity, the current (low) obliquity regime should result in ground ice thaw at low latitudes, where insolation and daytime temperatures are currently greatest, and this is not observed. A previously undescribed meltwater sequence in the Cerberus plains, at 20 degrees N/187 degrees E, shows that comparable, but much more continuous, and mappable melting and surface runoff have occurred in the geologically recent past at near-equatorial latitudes on Mars. Polygonal ground in the Cerberus plains is seen by the Mars Global Surveyor Mars Orbiter Camera (MOC) to suffer sequential, regional-scale volatile-loss consistent with thaw of near-surface ground ice under periglacial conditions. This degradation is continuously sampled by a single MOC strip, showing an icy landscape undergoing thaw modification and collapse, and may form the first evidence of equatorial wet-based glaciation during late Amazonian time, with indications of melting within the last million years. The dissolution and re-formation of polygonal ground links this landform to freeze-thaw processes, providing the conclusion to a question that has been the subject of debate for three decades-whether Mars' polygonal grounds require ice to form-and a consistent explanation for the fate of the water that carved the great outflow channels, much of which may still reside as ground ice in the regolith. This thaw occurs in the Cerberus Formation; deposits that are considered to be magmatic in origin, and the type formation for late-stage, "plains-style" volcanism on Mars [Keszthelyi, L., McEwen, A.S., Thordarson T., 2000. J. Geophys. Res. 105, 15027-15049]. By superposing large numbers of small impact craters, polygonal ground in the Cerberus plains sustains previous suggestions of a non-magmatic origin for this and other landforms in the region [Page, D.P., Murray, J.B., 2006. Icarus 183, 46-54]. Together, these periglacial landforms document evidence of climate change much younger than is currently recognised by crater counts, with important implications for age constraints on young surfaces and absolute age determinations by this method. It is tentatively suggested that this melting may be Occurring today, with a striking correspondence between permafrost thaw in the Cerberus plains, the high atmospheric methane flux currently observed over this region [Mumma, M.J. , Noak, R.E., DiSanti, M.A., Bonev, B.P., Dello Russo, N., 2004. Bull. Am. Astron. Soc. 36, 1127; Krasnopolsky, V.A., Maillard, J.P., Owen, T.C., 2004. Icarus 172, 537-547; Formisano, V., Atreya, S., Encrenaz, T., Ignatiev, N., Giuranna, M., 2004. Science 306, 1758-1761], and the only latitude zone on Mars-equatorward of 30 degrees N-where melting of ground ice is thought possible in the current climate [Haberle, R.M., McKay, C.P., Schaeffer, J., Cabrol, N.A., Grin, E.A., Zent, A.P., Quinn, R., 2001. J. Geophys. Res. 106 (E10), 23317-23326; Lobitz, B., Wood, B.L., Averner, M.M., McKay, C.P., 2001. Proc. Natl. Acad. Sci. 98, 2132-2137]. Low-latitude polygonal ground as transient, and hydrologically active over wide areas transforms our understanding of the recent climatic evolution of Mars, supporting models of atmospheric water-ice migration [Mischna, M., Richardson, M.I., Wilson, R.J., McCleese, D.J., 2003. J. Geophys. Res. 108 (E6). 5062], complex, volatile stratigraphies [Clifford, S.M., Parker, T.J., 2001. Icarus 154, 4079], and hypothesised, geologically recent 'ice ages' [Head, JW., Mustard, J.F., Kreslavsky, M.A., Milliken, R.E., Marchant, D.R., 2003. Nature 426, 797-802]. The temporal coincidence of glacial epochs on the Earth and Mars during the Quaternary and latest Amazonian would suggest a coupled system linking both [Sagan, C., Young, A.T., 1973. Nature 243, 459].

Item Type: Journal Item
ISSN: 0019-1035
Academic Unit/School: Faculty of Science, Technology, Engineering and Mathematics (STEM) > Physical Sciences
Faculty of Science, Technology, Engineering and Mathematics (STEM)
Item ID: 15652
Depositing User: Colin Smith
Date Deposited: 20 Apr 2009 10:17
Last Modified: 04 Oct 2016 10:20
Share this page:


Actions (login may be required)

Policies | Disclaimer

© The Open University   contact the OU