The Open UniversitySkip to content

In situ radiometric dating on mars: investigation of the feasibility of K-Ar dating using flight-type mass and X-ray spectrometers

Talboys, D. L.; Barber, S.; Bridges, J. C.; Kelley, S. P.; Pullan, D.; Verchovsky, A. B.; Butcher, G.; Fazel, A.; Fraser, G. W.; Pillinger, C. T.; Sims, M. R. and Wright, I. P. (2009). In situ radiometric dating on mars: investigation of the feasibility of K-Ar dating using flight-type mass and X-ray spectrometers. Planetary And Space Science, 57(11) pp. 1237–1245.

Full text available as:
PDF (Accepted Manuscript) - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
Download (1MB)
DOI (Digital Object Identifier) Link:
Google Scholar: Look up in Google Scholar


The absolute chronology of Mars is poorly known and as a consequence a key science aim is to perform accurate radiometric dating of martian geological materials. The scientific benefits of in situ radiometric dating are significant and arguably of most importance is the calibration of the martian cratering rate, similar to what has been achieved for the Moon, to reduce the large uncertainties on absolute boundary ages of martian epochs. The Beagle 2 Mars lander was capable of performing radiometric date measurements of rocks using the analyses from two instruments in its payload: (i) the X-ray Spectrometer (XRS) and (ii) the Gas Analysis Package (GAP). We have investigated the feasibility of in situ radiometric dating using the K-Ar technique employing flight-like versions of the Beagle 2 instrumentation. The K-Ar ages of six terrestrial basalts were measured and compared to the ‘control’ Ar-Ar radiometric ages in the range 171 – 1141 Ma. The K content of each basalt was measured by the flight spare XRS and the 40Ar content using a laboratory analogue of the GAP. The K-Ar ages of five basalts broadly agreed with their corresponding Ar-Ar ages. For the final basalt, the 40Ar content was below the detection limit and so an age could not be derived. The precision of the K-Ar ages was ~30% on average. The conclusions from this study are that careful attention must be paid to improving the analytical performance of the instruments, in particular the accuracy and detection limits. The accuracy of the K and Ar measurements are the biggest source of uncertainty in the derived K-Ar age. Having investigated the technique using flight-type planetary instrumentation, we conclude that come of the principle challenges of conducting accurate in situ radiometric dating on Mars using instruments of these types include determining the sample mass, ensuring all the argon is liberated from the sample given the maximum achievable temperature of the mass spectrometer ovens, and argon loss and non-radiogenic argon in the samples analysed.

Item Type: Journal Item
Copyright Holders: 2009 Elsevier
ISSN: 0032-0633
Keywords: Mars chronology; planetary instrumentation; radiometric dating; X-ray fluorescence spectrometry; mass spectrometry
Academic Unit/School: Faculty of Science, Technology, Engineering and Mathematics (STEM) > Physical Sciences
Faculty of Science, Technology, Engineering and Mathematics (STEM)
Learning and Teaching Innovation (LTI) > Institute of Educational Technology (IET)
Learning and Teaching Innovation (LTI)
Research Group: Space
Item ID: 15307
Depositing User: Simon Kelley
Date Deposited: 13 Mar 2009 12:14
Last Modified: 07 Dec 2018 12:41
Share this page:


Altmetrics from Altmetric

Citations from Dimensions

Download history for this item

These details should be considered as only a guide to the number of downloads performed manually. Algorithmic methods have been applied in an attempt to remove automated downloads from the displayed statistics but no guarantee can be made as to the accuracy of the figures.

Actions (login may be required)

Policies | Disclaimer

© The Open University   contact the OU