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Abstract

Requirements for product families are expressed in terms
of commonality and variability. This distinction allows
early identification of an appropriate software architecture
and opportunities for software reuse. Feature diagrams pro-
vide intuitive notations and techniques for representing re-
quirements in product line development. In this paper, we
observe that feature diagrams tend to obfuscate three im-
portant descriptions: requirements, domain properties and
specifications. As a result, feature diagrams do not ade-
quately capture the problem structures that underlie vari-
ability, and inform the solution structures of their complex-
ity. With its emphasis on separation of the three descrip-
tions, the problem frames approach provides a conceptual
framework for a more detailed analysis of variability and
its structure. With illustrations from an example, we demon-
strate how problem frames analysis of variability can aug-
ment feature diagrams.

1 Introduction

A software product line (SPL) is “a set of software-
intensive systems that share a common, managed set of fea-
tures satisfying the specific needs of a particular market seg-
ment or mission and that are developed from a common set
of core assets in a prescribed way” [6]. Software Product
Line Engineering (SPLE) is a rapidly emerging software en-
gineering paradigm that institutionalises reuse throughout
software development. By adopting SPLE, one expects to
benefit from economies of scale and thereby improving the
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cost, productivity, time to market, and quality of developing
software.

Central to the SPLE paradigm is the modelling and man-
agement of variability, i.e. “the commonalities and differ-
ences in the applications in terms of requirements, archi-
tecture, components, and test artefacts” [21]. In order to
tackle the complexity of variability management, a num-
ber of supporting modelling languages have been proposed.
In this paper we examine two approaches for analysing re-
quirements for SPLs: Feature Diagrams and the Problem
Frames approach.

Feature Diagrams (FD) [16, 17, 9, 8, 28, 2] are mostly
used to model the variability of application “features” at a
relatively high level of granularity. Their main purposes are
(i) to capture feature commonalities and variabilities, (ii) to
represent dependencies between features, and (iii) to deter-
mine combinations of features that are allowed and disal-
lowed in the SPL. An important limitation of FDs is that
they tend to mix requirements, domain properties and spec-
ifications. For example, in FDs, it is not clear whether vari-
ability is a domain, requirement or solution property.

The Problem Frames approach (PF) by Jackson [14] is
a more general approach to requirements engineering. This
approach emphasises a clear distinction between require-
ments, domain descriptions and specifications. However,
the PF approach has not been applied in the context of
feature-based development.

In this paper we show that FDs and the PF approach can
be used as complementary techniques. The basic idea is that
a PF analysis would serve as an early requirements analysis
in product line development.

Yu et al. [30] identify lack of organisational and moti-
vational context in FDs and propose goal models to com-



plement FD. Similarly, Halmans and Pohl [12] suggest that
use case diagrams can help in communicating variability to
different stakeholders. However, with the PF approach we
aim to put FDs in the context of domains in the real world.
Benefits of this approach include (i) existing FDs will be
supplemented by an analysis of underlying problem com-
plexity, (ii) notations and semantics of FDs and problem
frames are not changed or extended, (iii) this approach is
not prescriptive, meaning no change to process or method-
ology is suggested, and (iv) FDs can link problem frames
to the solution space. We believe that our approach to use
problem frames as an early analysis in SPL development is
a novel contribution to this discussion.

The rest of this paper is organized as follows. Section
2 describes the background to this work by providing an
overview of FDs and the PF approach. Section 3 introduces
the illustrative example, which is then analysed using FDs
in Section 3.1, and using the PF approach in Section 3.2,
before revisiting the initial analysis in Section 3.3. Section
4 gives an overview of related work. Discussions and con-
clusions can be found in Section 5.

2 Background

In this section we will briefly review the two approaches
considered in this paper, Feature Diagrams and the Problem
Frames approach.

2.1 Feature Diagrams

Feature diagrams are a common notation for represent-
ing requirements of SPLs using a feature tree, or a directed
acyclic graph. Since their introduction in 1990 as part of
the FODA method [16], many new or adapted notations
have been published. Schobbens et al. [27, 25] give an
overview of the existing FD notations and approaches. They
define a formal semantics for FD notations. They also in-
troduce their own FD language, varied FDs (VFD) inspired
by Riebisch et al. [23], which only contains one decom-
position relation with cardinalities. Their notation is used
throughout this paper1.

Figure 1, adapted from [26], is an example of a simple
feature diagram for a mobile phones product line. A mo-
bile phone has a GSM connectivity feature, a messaging
feature and a multimedia feature. They are linked by an
and-relation, as the cardinality {3, 3} of the top feature in-
dicates, which means that they all have to be included in
a product. The cardinality {2, 4} of the GSM connectiv-
ity feature means that at least two frequency bands have to

1To be precise, Schobbens et al. only defined the semantics and an
abstract syntax. The concrete syntax we use here is inspired by Riebisch et
al.’s FORE FD. In our concrete syntax, unary {0, 1} decompositions (i.e.
optional features) are simplified with hollow circles.

Figure 1. A feature diagram for a mobile
phone product line.
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be supported. The messaging feature has two subfeatures
connected by an and-relation: the mandatory SMS feature
and the optional MMS feature (indicated by the hollow cir-
cle above it). It does not have to be included even though
the cardinality of its parent node is {2, 2}. The Multime-
dia feature is decomposed with an or-relation (cardinality
{1, 2}), that means that at least one of its subfeatures has
to be included. The Camera feature is decomposed with a
xor-relation (cardinality {1, 1}), meaning that only one of
the three picture resolutions can be supported by the mobile
phones’ camera.

Features in FDs generally refer to requirements R, but
they can also represent domain properties W, specifications
S and design D, leading to confusion as to what exactly FDs
are describing. This is reflected for example by the defini-
tions by Kang et al. [17]: “a prominent or distinctive user-
visible aspect, quality or characteristic of a software system
or systems”. This notion of “feature” is not restricted to R,
but also includes S and even D. As a result, FDs often do
not reveal much about the underlying complexity of prob-
lem structures.

FDs can also represent variability with different binding
times, such as design-time variability and run-time variabil-
ity according to van Gurp et al. [29]. The scope of this
paper will be limited to design-time variability, that is vari-
ability occurring in the requirements. For a discussion on
the PF approach to run-time variability, also referred to as
context-awareness, see [24].

2.2 Problem Frames

The Problem Frames approach, proposed by Jackson in
[13, 14], is a conceptual framework to software require-
ments engineering, which emphasises the need to put real
software problems in their context. This contextualisation
allows systematic reasoning about the required properties of
the world the requirements refer to, the given properties of
the world the machine must rely on, and the behavior of the
machine (software) to bring about the necessary change in



the world properties. This conceptual framework has been
used as a basis to (i) relate problem and solution structure
[10], (ii) describe architecture-inspired problem decompo-
sition [22], (iii) recompose software problems using a com-
position operator [18], and (iv) capture patterns of change
in socio-technical systems [5].

Figure 2. A context diagram for a traffic lights
controller.
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Figure 2, taken from [14], shows a context diagram for
a problem in which a machine is needed to control traffic
lights. The context diagram contains the Lights controller
machine, marked by the rectangle with two vertical stripes,
and the real world domain Light units. These domains have
shared states or events (a), known as shared phenomena,
which denote the actions the Lights controller can perform
on the Lights units.

Figure 3. A problem diagram for a traffic
lights controller.
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a: LC! {RPulse[i], GPulse[i]} b: LU! {Stop[i], Go[i]}

The context diagram only describes the context in which
the problem is set, and not the actual problem or the require-
ment, which in turn appears in the problem diagram. In
figure 3, the dashed oval represents the requirement, which
constrains the properties of the Light units.

Decomposition of a complex problem is done by fitting
its subproblems to basic frames, for which there is a known
solution. Jackson discusses five basic frames, each describ-
ing a basic class of problems (a problem pattern).

The PF approach also emphasises a clear distinction be-
tween the three different descriptions: the requirements R,
the domain properties W and the specifications S. These
three descriptions are linked by an entailment relationship
W,S ` R. For each basic frame, the entailment relationship
is expressed by a correctness argument. From the correct-
ness argument we can derive certain frame concerns. These
frame concerns help the analyst to raise questions about
properties of the analysed problem, by providing a list of
typical issues that apply to the problem frame at hand.

Jackson also introduces variant frames, which extend ba-
sic frames by typically adding a new domain to the problem

context. A variant frame shares the central concern of the
basic frame, but has additional concerns to deal with prob-
lems that do not fit basic frames. Variant frames are one
technique of the PF approach considered in this paper for
dealing with variability.

3 Illustrative Example

The example we use throughout this paper is a simplified
sea buoy system, which was discussed by Booch in [4]. The
main purpose of the sea buoy is to provide navigation and
weather data to passing vessels. The buoys collect air and
water temperature, wind speed, and location data through a
variety of sensors.

The requirements for the basic version (p1) of the sea
buoy are as follows:

R1 Record current wind, temperature, and location infor-
mation; wind speed readings are taken every 30 sec-
onds, temperature readings every 10 seconds and loca-
tion every 10 seconds.

R2 Broadcast current wind, temperature, and location in-
formation every 60 seconds.

A more sophisticated version (p2) of the sea buoy system
also provides the following additional functionality:

R3 Record and broadcast wave height measures; wave
height readings are taken every 20 seconds and are
broadcast together with the other gathered informa-
tion.

This product line has one variation point, which is the
decision as to whether the additional wave height sensor
will be included or not. The following two sections discuss
how the addition of the requirement R3 affects the problem
structure of R1 and R2.

3.1 Feature diagram analysis

Following the guidelines proposed by Lee et al. [20], we
decompose the requirements R1 and R2 as follows. Glob-
ally the buoy serves two purposes: first it gathers data (R1),
then it broadcasts the gathered data (R2), making them two
compulsory features. The data gathering feature can be fur-
ther decomposed into three subfeatures: (i) the wind speed
measurement feature, (ii) the water temperature measure-
ment feature and (iii) the location determination feature.
Features in figure 4 can be described as follows (we omit
the root).

Data gathering This is a grouping feature for all data gath-
ering activities. It has three subfeatures, corresponding
to the different types of measures taken. Its cardinality



is {3, 3}, which means that all subfeatures have to be
included in the product.

Wind speed measurement Record wind speed mea-
surement every 30 seconds.

Water temperature measurement Record water
temperature measurement every 10 seconds.

Location determination Record position informa-
tion every 10 seconds.

Data broadcast Broadcast gathered weather information
over the radio every 60 seconds.

Figure 4. A feature diagram for the basic sea
buoy system..

Sea Buoy {2, 2} 

Data gathering {3, 3} Data broadcast 

Wind speed
measurement

Location
determination

Water temperature
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Adding the variability requirement (R3) leads to the re-
vision of the initial diagram as shown in figure 5. In the
diagram, the cardinality of the data gathering feature needs
to be changed to accommodate the new branch, represent-
ing the wave height measurement feature. The new feature
can be described as follows:

Wave height measurement Record wave height measure-
ment every 20 seconds. This feature is optional, it is
only included in the advanced version of the sea buoy.

It is noted that the Data broadcast feature is also affected
by the addition of the new requirement.

Figure 5. A feature diagram for the basic and
the advanced sea buoy system.
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Given this revised feature tree, the following two prod-
ucts (sets of features) can be derived: {Sea Buoy, Data
gathering, Data broadcast, Wind speed measurement, Wa-
ter temperature measurement, location determination} and
{Sea Buoy, Data gathering, Data broadcast, Wind speed
measurement, Water temperature measurement, location
determination, wave height measuring}.

This is the structure of variability revealed by the FD
analysis.

3.2 Problem analysis

We now apply a PF analysis to the same example, first
using the base requirements (R1 and R2), and then adding
the variability requirement (R3).

3.2.1 Analysing R1 and R2

Figure 6 shows the context diagram for R1 and R2 of the sea
buoy controller. Inclusion of the three real world domains2

(Water, Air, Location) raises concerns that otherwise would
have been overlooked. These concerns are discussed to-
wards the end of the analysis.

Figure 6. A first context diagram for the sea
buoy example.
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c: SBC! {wheatherData} f: LS! {measuredLocation} k: W! {currentLocation}

h: WS! {measuredWindSpeed} i: A! {currentWindSpeed}

g: TS! {measuredTemperature} j: L! {currentTemperature}

The shared phenomena between the machine and the Ra-
dio domain (c) are the emitted weather information. The
Temperature Sensors domain shares the water temperature
phenomenon (j) with the Water domain, and the measured
water temperature (g) with the machine. The reasoning
is similar for the other sensor and environmental domains.
The shared phenomena descriptions will be omitted on later
diagrams.

Figure 7 shows the composite problem diagram for R1
and R2. The Recorder and Broadcast Machines are a de-
composition of the Sea Buoy Controller machine shown in
the context diagram of figure 6. In order to link both ma-
chines, we have to introduce a new domain: the Data Store.

2These domains are causal domains, which is noted by the C in the
lower right corner. Causal domains include predictable causal relationships
among their causal phenomena.



Figure 7. A composite problem diagram for
the sea buoy example.
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It is a designed lexical domain3 where the measures can be
stored by one machine before they are broadcast periodi-
cally by the other. The requirements are depicted as dashed
ovals R1 and R2. An arrow indicates a domain that is re-
strained by the requirement. R1 constrains the Data Store,
meaning that the data stored represents the truthful current
weather information. R2 constrains the Radio, meaning that
the periodic broadcast contains appropriate weather infor-
mation.

The subproblem R1 is complex and requires further de-
composition. We identify the following three subproblems.
(R1.A) Wind speed recording subproblem: this subproblem
requires that the machine reads the current wind speed and
sends it to the Data Store every 30 seconds, and (R1.B)
Location recording subproblem: this subproblem requires
that the machine determines the current location and sends
it to the Data Store every 10 seconds, and (R1.C) Temper-
ature recording subproblem: this subproblem requires that
the machine reads the current temperature. The subprob-
lem R2 is already an instance of a basic problem frame, it
requires no further decomposition.

Figure 8. The wind speed recording subprob-
lem.
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3Which means that it’s a passive domain, where information may be
stored temporarily, and that we have a certain control over its structure.

Due to space constraints, our discussion will focus on
the analysis of subproblem R1.A, which is similar to the
other two subproblems. Figure 8 shows the problem di-
agram for the subproblem R1.A, the which fits a class of
problem known as Information Display4. The three con-
stituent descriptions of the subproblems are given below.

Requirement. Record current wind speed information.
Readings are taken every 30 seconds and written to the
Data Store.

Domain properties. We assume that at any time when a
given value x is visible to the sensor at interface i (see
figure 8), the same value is visible to the machine at
interface h at the same time, i.e. ∀x ∈ R • x at h ⇒
x at i. In other words, we assume that the water tem-
perature sensors are working correctly. We also as-
sume that a value sent to the Data Store at b be stored.

specification. forever {
Read x from h;
Write x to b;
Wait 29 sec;

}

Note that the specification assumes that the read and
write operations are atomic, and that their execution
takes exactly one second.

Figure 9. A correctness argument for sub-
problem R1.A.
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1. Given a current wind speed, (Requirement)

2. because the wind speed has certain properties making it measur-
able,5 (Domain properties)

3. the wind speed sensors are able to capture this information, (Domain
properties)

4. the machine will then obtain the readings, (specification)

4This is one of the basic frames discussed by Jackson. The problem is
to build a machine that collects information about some part of the physical
world and presents it at a given place, which is the data store in our case.

5Common properties used by anemometers rely on the fact that there is
a relation between the wind speed and the movement of flexible mechan-
ical devices, like windmills or cups, exposed to the wind. Or the cooling-
effect of the wind, which also varies with its speed.



5. and send them to the data store every 30 seconds; (specification)

6. the data store being capable of storing the sent information until it is
needed, (Domain properties)

7. satisfying the requirement, that the given information should be
saved every 30 seconds. (Requirement)

Figure 9 shows a correctness (or adequacy) argument for
the subproblem R1.A explaining how the requirement, the
specification and the domain properties fit together, satisfy-
ing the entailment relationship S, W ` R.

Further analysis of the problem reveals that there are im-
portant concerns to be considered.

Domain reliability concern. The assumption for the wind
speed sensor domain ∀x ∈ R • x at h ⇒ x at i is
too strong, because in real life the sensor could fail
or give incorrect information. This could lead to the
requirement not being satisfied.

Resource shortage concern. The Data Store can only be
of finite size. This means that it can indeed be full at a
given moment.

Initialisation concern. The Data Store can be empty when
the first broadcast is due.

These and other concerns need to be considered when
implementing the specification for the subproblem.

3.2.2 Adding the variability requirement.

The requirement R3, that the wave height be recorded and
broadcast as well, is a complex problem that can be decom-
posed into two subproblems. (R3.1) Wave height recording
subproblem: the machine reads the current wave height and
sends it to the Data Store every 20 seconds. (R3.2) Wave
height broadcast subproblem: the machine broadcasts the
wave height every 60 seconds. The resulting subproblems
can be considered as variants of the initial two subproblems
R1 and R2, represented in figure 7.

Figure 10 shows a high level problem diagram for R1 and
R3.1. The diagram has been simplified such that all sensors
now form only one domain; the same holds for the envi-
ronment. The Wave height Sensor domain has been added,
connecting the machine to the environment, as stated by R3.
The resulting problem diagram can be considered as being
a variant frame of the initial diagram.

The diagram in figure 10 shows that there are no addi-
tional or changing shared phenomena between the recorder
machine (respectively the environment) and the sensors.
This means that a big part of the preceding problem anal-
ysis is still valid. The Sensors domain can be considered
as a “black box”, which is not touched by adding the Wave
height Sensor domain. Hence, all concerns and all diagrams
related to the sensors and the environment, are still valid.

Figure 10. A high level problem diagram for
R1 and R3.1.

redroceR
enihcaM CtnemnorivnECsrosneS

k, j, if, g, h l, n, m, q

CrosneSthgiehevaW
o p

1, R3.1R

xData Store

u’
e’

Other shared phenomena change. The shared phenomena
e′ between the Recorder Machine and the Data Store, as
well as the requirement phenomena u′, change as in the new
problem the wave height has to be sent to the Data Store as
well. A new requirement phenomenon q has been added
because the requirement R1, R3.1 also refers to the wave
height in the real world.

Figure 11. A high level problem diagram for
R2 and R3.2.
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Similar changes are observed for the broadcast subprob-
lem of R2 and R3.2 which is represented in figure 11. In
order to satisfy the new requirement, the shared phenom-
ena between the broadcast machine and the Data Store (d′)
now also contain the wave height information. The same
applies to the shared phenomena between the broadcast
machine and the radio (c′). The requirements phenomena
change as well because the requirement now also refers to
the wave height communicated over the radio (a′), and the
wave height in the data store (v′).

These changes will raise new concerns. Due to space
constraints, the correctness argument is not given here.
However, it is clear that the new concerns are very similar
to the ones observed in section 3.2.1. For instance, the re-
source shortage concern has to be reconsidered, as the Data
Store has to hold more information than before. Overall,
this means that the initial concerns, while still being valid,
have to be revised to take into account new concerns of sim-
ilar nature.

As far as the specification is concerned, it is sufficient to
make sure that variability in the shared phenomena is pos-
sible. The variation barely affects the original diagram in
terms of domains, and so large parts of the original analysis
are still valid.



3.3 Feature diagram analysis revisited

The lessons learnt through the problem analysis are the
following.

Problem structure. The optional property of the wave
height feature is not a local issue, it affects other fea-
tures as well. The wave height feature affects its par-
ent, the Data Gathering feature, as well as the Data
Broadcast feature. This, however, is not visible in the
problem structure given by the FDs in section 3.1.

Issues and concerns. The problem analysis has revealed
many issues and assumptions that could affect the
specifications we write. For example, with the PF anal-
ysis it was possible to uncover domain assumptions
that turned out to be too strong or unrealistic. These
issues have not been discovered through the FD analy-
sis.

Finally, the problem analysis would not complement the
Feature Diagrams, if we could not refer to their features.
In our case, we observe a correspondence between features
and subproblems fitting basic and variant frames, as sum-
marised in Table 1. Hence, when we are treating and dis-
cussing a feature, we can easily refer to its underlying prob-
lem structure, and to all the concerns that arise from it.

Table 1. Linking PF artefacts to features

Features Problem frames

Data gathering Subproblem R1, R3.1

- Wind speed measurement - Subproblem R1.A

- Water temp. measurement - Subproblem R1.B

- Location determination - Subproblem R1.C

- Wave height measurement - Subproblem R3.1

Data broadcast Subproblem R2, R3.2

- Wind speed, water temp.
and location broadcast

- Subproblem R2

- Wave height broadcast - Subproblem R3.2

4 Related Work

Approaches to contextualising FDs already exist. Yu et
al. [30] propose a procedure for translating goal models to
FDs. Their early requirements analysis step uses goal mod-
els rather than problem frames. They produce preliminary
FDs based on their goal models, thus making a step towards
a more solution-oriented view. They also see features as

being part of the solution, or at least of the system (late re-
quirements), whereas goals represent stakeholder intentions
(early requirements).

The Feature-Oriented Reuse Method (FORM) [17] is
also an integrated process using FD to model variability. It
extends the basic FD notation by defining a framework with
guidelines and different classes of features. FORM distin-
guishes between capability features, operating environment
features, domain technology features and implementation
technique features. These four feature types are represented
on a layered FD. This classification is similar to Jacksons’
requirements, domain properties and specification classifi-
cation. However, its aim is not to reason about the problem,
it is rather aimed at structuring requirements and how they
lead to solutions.

Griss et al. [9] as well as Halmans and Pohl [12] also
try to put FD into context by linking them to use case di-
agrams. Griss et al. integrate the FODA approach [16]
into the Reuse-Driven Software Engineering Business [15].
They consider use case models as being user oriented, and
FD as being oriented towards the software developer. Hal-
mans et al. use use cases to document product family vari-
ability, and to communicate it to the user.

Czarnecki and Antkiewicz [7] take a similar approach.
They argue that “features in a feature model are merely
symbols”s and that mapping them to other models “gives
them semantics”, which shows that the purpose of their
work is similar to what is outlined in this paper. They de-
scribe a general approach for mapping different kinds of
modelling languages to a feature model. They then illus-
trate it by mapping FDs to UML activity diagrams.

In a way, all these approaches aim to address the lack of
context in FD, either by introducing additional goal models,
activity diagrams, or additional use case diagrams. They ac-
tually observe and address the same shortcomings of FD as
we do in this paper. Yet, the techniques they use to address
these shortcomings do not support problem reasoning at a
level of granularity that separates descriptions of require-
ments, domain properties, and specifications, as problem
frames do. Therefore we think that our paper is a novel
contribution to this discussion on problem variability.

Our approach fits also into the paradigm of Orthogonal
Variability Modelling (OVM) introduced by Bachmann et
al. [1]. This paradigm suggests the use of FDs as the central
variability model, which is then linked to more detailed base
diagrams, like class diagrams for data or state diagrams
for behavior, in order to allow for more precise reasoning.
Problem frames can be seen as being such a base diagram
which allows detailed reasoning about the problem and its
physical context. OVM suggests to extend base diagrams
with explicit modelling of variability and to relate the global
variability model to the variability in the base models. Al-
though beyond the scope of this paper, the PF approach can



be extended to highlight variability in its models, and how
it links to variability in the base models.

5 Conclusions & Future Work

In this paper we have examined problem-oriented ap-
proaches, and how they can be combined with well estab-
lished product line development methods. We did this by
analysing examples of both approaches, problem frames
and FDs. Both were applied to an illustrative example,
based on which we indicated different weaknesses of FDs
that can be tackled by problem frames, thus showing a cer-
tain complementarity of both approaches.

In the illustrative example, we have demonstrated the
benefit of an early requirements analysis using the PF ap-
proach. It allows us to understand and to reason about the
problem, rather than about some set of abstract require-
ments. It guides us in our discovery of the problem world
by offering a complete and consistent methodology. By
exploring the problem in greater detail, critical issues can
be discovered at a much earlier stage of the development,
when there is still enough flexibility for major architectural
changes.

One could argue that more elaborate dependency nota-
tions should be introduced into the FD notation, so that it
can handle these problems by its own. This is done by
Lee and Kang [19] as well as more recently by Zhang et
al. [31]. However, since there is no notion of physical con-
text in FDs, it is not clear how these dependencies can be
detected effectively. In this sense, our approach could serve
as an input for these notations.

We also managed to establish a correspondence between
basic problem diagrams and features. We thus introduced a
certain amount of traceability because this correspondence
tells us for each feature what problem it addresses. We can
associate a problem diagram with every basic feature, repre-
sent its underlying structure and analyse potential concerns.
Hence, we know what the issues for a certain feature are,
and what the important or critical aspects of these features
will be, even before we start to implement them. However,
we need to validate whether or not the link from problem
frames to FDs can be made in other cases.

Finally, we have to acknowledge that FDs capture the
essence, as well as the variability aspects in a very concise
and intuitive way. Many different stakeholders have no dif-
ficulty talking about features, thus the same notation can
be used to communicate with all of them, which simplifies
things. FDs are indeed excellent at what they are intended
for: represent requirements for product lines and feature-
based development.

In the introduction we argued that FDs can link problem
frames to the solution space. As methods like FORM [17]
already link FDs to the solution space, the step left is to link

problem frames to FDs. In this paper we examined a pos-
sible correspondence between artefacts of both approaches.
This link has to be examined in greater detail in future work.
A first step towards a formal combination of FDs and the PF
approach is the definition of a formal semantics for both of
them. Fortunately there has already been progress in this
area: for example, Bontemps et al. [3] and Schobbens at al.
[27, 25] define a semantics for FDs, and Hall et al. [11] for
the PF approach. We intend to build on this work.

6 Acknowledgements

We would like to thank our colleagues at the Open Uni-
versity, especially Mohammed Salifu and Yijun Yu as well
as Pierre-Yves Schobbens and Jean-Christophe Trigaux at
the University of Namur, for their feedback and for many
interesting discussions about the subject. We acknowledge
the financial support of EPSRC.

References

[1] F. Bachmann, M. Goedicke, J. C. S. do Prado Leite, R. L.
Nord, K. Pohl, B. Ramesh, and A. Vilbig. A meta-model for
representing variability in product family development. In
PFE, pages 66–80, 2003.

[2] D. S. Batory. Feature Models, Grammars, and Propositional
Formulas. In SPLC, pages 7–20, 2005.

[3] Y. Bontemps, P. Heymans, P.-Y. Schobbens, and J.-C.
Trigaux. Semantics of FODA Feature Diagrams. In
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