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Abstract: While microarrays make it feasible to rapidly investigate many complex 

biological problems, their multi-step fabrication has the proclivity for error at 

every stage. The standard tactic has been to either ignore or regard erroneous gene 

readings as missing values, though this assumption can exert a major influence 

upon post genomic knowledge discovery methods like gene selection and Gene 

Regulatory Network (GRN) reconstruction. This has been the catalyst for a raft of 

new flexible imputation algorithms including, Local Least Square Impute and the 

recent Heuristic Collateral Missing Value Imputation, which exploit the biological 

transactional behaviour of functionally correlated genes to afford accurate missing 

value estimation. This paper examines the influence of missing value imputation 

techniques upon post genomic knowledge inference methods with results for 

various algorithms consistently corroborating that instead of ignoring missing 
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values, recycling microarray data by flexible and robust imputation can provide 

substantial performance benefits for subsequent down-stream procedures.   

1. Introduction 

The study of genes and their transactional relationship with other genes can be modelled 

using machine learning algorithms in a diverse range of applications from disease 

analysis1 and drug progression for target diseases2 through to evolutionary study3 and 

comparative genomics4, all of which are characterised by using microarray gene 

expression data. The statistical analysis of microarray datasets depends highly upon the 

accuracy of the gene expression methods. Microarray production is a complex process 

whereby samples are prepared for differential expression in a series of stages involving 

the laying of specimens on the slides by a robotic arm, imaging of the slides and finally 

determining the numerical gene expression values. Each step inevitably exhibits a 

propensity for error5, a corollary to this is the inherent erroneous gene expression values 

for certain genes, which are popularly referred to as missing values. While microarray 

technology is continually being refined, there is an enormous amount of public domain 

gene expression data available that frequently contains at least 5% erroneous spots. 

Indeed, in many datasets at least 60% of genes have either one or more missing values6, 

which can seriously impact on subsequent data analysis involving for example, 

significant gene selection, Gene Regulatory Network (GRN) reconstruction and 

clustering algorithms7,8.  

The simplest ways to address this problem are to either repeat the experiment, though 

this is often not feasible for economic reasons, or ignore those samples containing 

missing values, but again this is not recommended because of the limited number of 

available samples. Alternative strategies include row average/median imputation 

(substitution by the corresponding row average/median value) and the ubiquitous 

ZeroImpute where missing values are replaced by zero. Both approaches are high-
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variance, with neither exploiting the underlying data correlations which can lead to 

higher estimation errors9. The prevailing wisdom is to accurately estimate missing 

values by exploiting the latent correlation structure of the microarray data,8,10 as 

manifest by the development of numerous microarray imputation techniques including 

Collateral Missing Value Estimation (CMVE)11, Singular Value Decomposition Impute 

(SVDImpute)9, K-Nearest Neighbour (KNN)9, Least Square Impute (LSImpute)10, 

Local LSImpute (LLSImpute)8, Bayesian Principal Component Analysis (BPCA)12, a set 

theoretic framework based on Projection onto Convex Sets Imputation method (POCS 

Impute)13 and most recently, Heuristic Collateral Missing Value Imputation 

(HCMVI)14. In addition other methods which use contextual information include Gene 

Ontology based Imputation (GOImpute)15 and meta data based imputation technique 16. 

This paper will investigate the gene expression correlation assumption by empirically 

analysing different post-genomic knowledge discovery methods including gene 

selection and GRN reconstruction techniques in the presence of missing values, 

specifically for the breast and ovarian cancer datasets of Hedenfalk et al17 and Amir et 

al18 respectively. The rationale for choosing these two datasets is that generally 

cancerous data 19 lacks molecular homogeneity in tumour tissues which makes missing 

value estimation far more challenging. Additionally, breast cancer is the second leading 

cause of cancer death in women today (following lung cancer), with 1 in 11 Australian 

women being diagnosed with the disease before the age of 75 and the number of breast 

cancer patients increasing everyday, as diagnosis methods improve20. Ovarian cancer is 

the fourth most common cause of cancer-related deaths in American women of all ages, 

as well as being the most prevalent cause of death from gynaecologic malignancies in 

the United States21. 

Figure 1 displays a generic post genomic knowledge inference framework, with the 

DNA sample being firstly converted to expression values prior to any knowledge 

inference being undertaken. As highlighted earlier, this phase (STEP 1 in Figure 1) can 
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introduce several erroneous (missing) values that can significantly impact upon any 

subsequent analysis. Unfortunately, while there have been many propitious imputation 

algorithmic contributions (STEP 2), there is still the pervading fallacy that either new 

data analysis methods will successfully manage missing values or more seriously, that 

missing values in fact do not impact appreciably upon downstream analysis22. 

Interestingly, even though there have been some attempts to test the impact of 

imputation on clustering methods23,24, no comprehensive single study has been 

undertaken to date to analyse the impact missing values can have on different post 

genomic knowledge discovery methods like gene selection, class prediction, clustering 

of functionally related genes and GRN reconstruction (STEP 4). This paper cogently 

argues that imputation is both an integral and indeed mandatory pre-processing step 

(STEP 2) prior to applying any knowledge discovery method (STEP 4). This judgement 

is justified by analysing various results which consistently reveal improved estimation 

accuracy when missing values are approximated by more flexible approaches such as, 

HCMVI and LLSImpute (STEP 3) because of their innate ability to preserve the 

variance of the data compared to other popular, if simpler, high variance methods.  

Aside from the obvious numerical relevance of missing value estimation, another key 

driver is the biological significance of imputation, particularly algorithmic performance 

in estimating significant genes in microarray data that may be erroneously affected. 

Plakophilin 2 (PKP2) for example, is present in breast carcinoma cell lines25 and is 

significant as it serves as a marker for the identification and characterisation of 

carcinomas derived either from or corresponding to, simple and complex epithelia26. As 

will be witnessed in Section 6, PKP2 is often not selected by gene selection methods 

when missing values are present and so would generally be either ignored or replaced 
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when conventional estimation methods are applied. By judiciously employing a flexible 

imputation strategy such as HCMVI however, the probability that these genes are 

correctly selected can be significantly enhanced. Similarly, the GRN reconstruction 

performance may be significantly influenced by missing values with a substantial 

number of vital co-regulation links being neglected when imputing by traditional and 

contemporary methods (Sections 3 and 4). The interaction in breast cancer data between 

ADP-ribosylation factor 3 and ESTs (Estrogen Sulfotransferase), which is similar to the 

NSAP1 protein is, for instance, consistently overlooked when missing values are 

introduced, though they have been successfully reconstructed using flexible imputation 

methods (Section 5). In both scenarios, accurate imputation crucially eliminates the 

need for repeating an experiment which can be costly, and may be pragmatically 

infeasible.  

This paper presents a treatise on existing imputation methods by examining their 

performance in managing microarray dataset missing values to improve post genomic 

knowledge discovery. Concomitant with analysing the numerical accuracy of 

imputation, the biological significance for two proteins is analysed, namely KIAA1025 

and MHCα from the breast and ovarian cancer datasets respectively, because of their 

acknowledged importance in diagnosing the different cancer types27-29.  

The remainder of the paper is organized as follows: after formally defining the 

nomenclature, Sections 3, 4 and 5 will respectively review the gamut of traditional, 

contemporary and flexible microarray missing value imputation algorithms together 

with their particular epithets and limitations. A reflective analysis is then presented in 

Section 6 upon a series of experiments performed on various breast and ovarian cancer 

microarray datasets, including both statistical and biological significance interpretations, 
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while some conclusions are provided in Section 7. 

Schematic Representation of Knowledge Discovery Framework

Imputation

Imputed Matrix

Gene Expression Data
Microarray Glass Slide

Gene A
Gene B
.
.
.

Gene N

Class A |Class B

Class Prediction

Clustering
Gene Selection

GRN Reconstruction

Knowledge Discovery Methods

STEP 1

STEP 3

 

Figure 1: A Schematic Representation of Post Genomic Knowledge Discovery 

Framework 

2. Nomenclature 

The convention adopted in all the imputation strategies is to assume the gene expression 

matrix Y has m rows and n columns, where the rows and columns represent genes and 

samples respectively as in (1). A missing value in gene expression data Y for gene i and 

sample j is formally expressed as Yij.  
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Imputation strategies have been broadly classified into three categories: traditional, 

contemporary and flexible techniques. Original imputation approaches, which replace a 

missing value by either zero or row/column mean, are designated as traditional, as they 

are simple and computationally efficient, but do not take advantage of any latent 

correlation within the data. Contemporary techniques subsequently evolved to improve 

the estimation accuracy by using inherent data correlations, usually under the 

assumption that the causal correlation structure is either localised or global. They are 

also characterised by using a fixed number of predictor genes in the estimation which 

limits the flexibility to fully exploit any data correlations. This was the incentive for the 

most recent family of flexible imputation methods which are able to freely adapt to the 

data distribution by automatically determining the optimal number of predictor genes, 

thereby minimising the impact of missing values on subsequent biological analysis. In 

the following sections, these three imputation categories are respectively reviewed. 

3. Traditional Imputation Techniques for Microarray Data 

These are broadly characterised by replacing expression values of those genes that 

posses missing values by zero, their gene/sample mean or median and in certain cases, 

by using the well-known KNN method. The advantages and disadvantages of these 

popular approaches are now discussed. 
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ZeroImpute and Mean/Median Imputation 

In these methods, missing values are respectively replaced by either zero (ZeroImpute) 

or the gene/sample average30 and/or median. The attraction is their simplicity and 

computational efficiency, though none take advantage of the underlying correlation 

structure of the data, with the consequence that the data variance is generally high. This 

means when there are a large number of missing values present in the microarray data 

these imputation strategies can significantly compromise subsequent post genomic 

analysis. The impact however, can be reduced by adapting the estimation parameters to 

the underlying correlation structure of the data, with the following sections examining 

some well-established methods. 

Singular Value Decomposition Based Imputation (SVDImpute)  

This uses the combination of Singular Value Decomposition (SVD) 9 and Expectation 

Maximization (EM)31 to estimate the missing values by calculating mutually orthogonal 

expression patterns often referred to as Eigen genes. As SVD calculations require the 

entire matrix, missing values are replaced by their row mean prior to the k most 

effective Eigen genes being selected according to their corresponding Eigen values. The 

imputed missing value estimate for Yij is then calculated by regressing gi against the k 

most effective Eigen genes with expression values from sample j which contained the 

missing value being ignored. SVDImpute reduces imputation errors by recursively 

estimating the missing values using the EM algorithm until the change in the matrices 

becomes less than an empirically determined threshold, nominally 0.01 9. The technique 

performs best when 20% of the Eigen genes are used for estimation, and while it is a 

better strategy than high-variance approaches like ZeroImpute, it has the drawbacks of 

both being highly sensitive to noise and only considering global data correlations, which 
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inevitably leads to higher estimation errors in locally correlated datasets.  

K-Nearest Neighbour (KNN) Estimation  

KNN9 estimates missing values by searching for the k nearest genes normally by 

applying the Euclidean distance and then taking the weighted average of these k genes. 

The k genes whose expression vectors are most similar to genetic expression values in 

all samples, except the sample which contains the missing value, are selected. The 

similarity measure between gene gi and other genes is then determined by the Euclidian 

distance over the observed components in sample j, and the missing value estimated as 

the weighted average of the corresponding entries in the selected k expression vectors, 

where the contribution of every gene is scaled by the similarity of its expression to gi.  

While KNN is flexible in terms of the choice of similarity measure, it does imply the 

performance of a specific metric is data dependent. Troyanskaya et al 9 demonstrated 

that Euclidean distance performs better than other similarity measures for microarray 

data, and though it is highly sensitive to microarray data outliers,  log-transforming the 

data can significantly reduce their effect in determining gene similarity.  

The choice of an appropriate k value especially influences imputation performance. 

Experimental results have established that for small datasets k=10 is the best choice7, 

while Toyanasaka et al9 observed that KNN is insensitive to values of k in the range 10 

to 20. The key point to emphasise is that regardless of the underlying structure of the 

microarray data, a preset value of k is employed which clearly does not fully harness the 

capability of an imputation method. A much more creative strategy is to endeavour to 

automatically determine the best k value from the data correlation structure, which is the 

fundamental premise of the two flexible imputation techniques described in Section 5.  

Summarising, while traditional algorithms have been widely adopted, the inherently 
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high data variance has a major impact on downstream analysis methods like significant 

gene selection and class prediction GRN reconstruction. To relax this restriction, more 

robust techniques have evolved in an attempt to garner superior performance in terms of 

estimation accuracy, although as will be witnessed, they still exhibit some limitations, 

most notably from a biological significance perspective. The next section focuses on 

some of the most well-established contemporary imputation approaches.  

4. Contemporary Imputation Techniques for Microarray Data 

This category embraces those methods that implicitly attempt to lower the data variance 

of missing value estimates, by seeking to exploit the underlying localised or global 

correlation structure of the microarray data. Some of the most popular algorithms 

together with their relative merits and demerits will now be investigated.   

Least Square Impute Estimation (LSImpute)  

This is a regression-based method that exploits the correlation between genes. There are 

three variants of the imputation LSImpute10 algorithm, namely: LSImpute-Gene, 

LSImpute-Array and LSImpute-Adaptive. LSImpute-Gene estimates missing values 

using the correlation between the genes (intra-sample) while LSImpute-Array exploits 

inter-sample correlation while LSImpute-Adaptive combines both techniques using a 

bootstrapping approach32. The communal features of all three LSImpute variants will 

now be delineated.  

To estimate missing value Yij in (1), the k-most correlated genes are firstly selected, 

whose expression vectors are similar to gene i from Y in all samples except j, where all 

the correlated genes do not contain any missing values. As LSImpute-Gene is based 

upon a regression, it mandates the number of model parameters must be lower than the 

number of observations, though in general for microarray data, the number of genes is 
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usually much greater than the sample number. The algorithm then computes regressive 

estimates for each selected gene and the missing value estimate is obtained from their 

weighted average. 

While LSImpute-Gene affords greater accuracy than traditional imputation methods 

like KNN and SVDImpute (Section 3), it still has the same fundamental limitation of 

using a preset k value. Bø et al 10 for example, empirically determined k =10 as the most 

suitable value for their particular dataset, though crucially this finding is data dependent 

and not generic. It also demonstrated this imputation approach works better if missing 

values have been initially approximated by LSImpute-Gene and then refined with 

LSImpute-Array. This lowers the imputation error, though commensurately it increases 

the computational overhead, and since it still employs LSImpute-Gene prior to any 

estimation, the value of k is always fixed. 

LSImpute-Adaptive combines the strengths of both LSImpute-Gene and LSImpute-

Array by fusing their respective imputation results. It modifies the weights for each 

imputation using a bootstrapping process32, with empirical results10 endorsing that this 

strategy performs better than when either variant is separately applied. 

With the flexibility to adjust the number of predictor genes in the regression, 

LSImpute performs best when data exhibits a strong local correlation structure, though 

the comparative prediction accuracy is still inferior to that achieved by the new flexible 

imputation algorithms, which dynamically determine k directly from the data (Section 

5). 

Bayesian Principal Component Analysis (BPCA) Estimation12 

BPCA estimates missing values using Bayesian estimation theory with a variational 

algorithm33 to calculate the model parameters and ultimately the imputed value Yij. The 
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posteriori distribution p(Yij) of the missing value and the posteriori distribution p(θ) of 

the model parameter θ is firstly computed from gene values having no missing values 

and since this distribution calculation requires the complete matrix, so missing values 

are replaced by their corresponding gene averages.  The model parameters p(θ) are then 

used to compute the current posteriori distribution, with the maximum likelihood32 

parameters being iteratively updated using the current posteriori distribution of model 

parameters and missing values, until convergence is reached.  

By considering only global correlations within a dataset, BPCA has a distinct 

advantage in terms of prediction speed compared with all the other imputation 

techniques analysed, but its performance is highly dependent on either a strong 

underlying global correlation within the data or having a very high number of samples. 

This is offset by the likelihood of high imputation errors when either the dataset is 

locally correlated or comprises a small number of samples.  

Collateral Missing Value Estimation (CMVE)11 

This algorithm is unique in contemporary missing value imputation techniques in using 

multiple estimates. Like LSImpute, it firstly estimates the missing value Yij by 

identifying the k most correlated genes, with either a covariance or Pearson correlation 

matrix being employed, depending upon the data distribution, to find these correlated 

genes. LS regression and two variants of the Non Negative LS (NNLS) algorithm are 

then applied to compute three separate estimates for Yij, which are then linearly fused as 

follows: 

1 2 3. . .ijY ρ= Φ + ΔΦ +ΛΦ  (2) 

where ρ, Δ and Λ are the weights assigned to each constituent imputation estimate.  

CMVE uses LS regression of k correlated genes for the first missing value estimate 
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Φ1, while NNLS and linear programming compute the other two estimates Φ2 and Φ3.  

The rationale for including NNLS is that unnormalised microarray data has only 

positive values so NNLS takes advantage of exploiting the positive search space. If the 

data is either normalized or log-transformed then, it will contain some negative values 

so LS regression is used for this particular estimation. Since both the Pearson 

correlation and covariance functions necessitate complete imputation matrices, so, 

CMVE firstly replaces all missing values by gene averages. Once the initial missing 

value estimate is generated, then new estimated value is used in all future predictions, 

which is a distinctive feature of this particular imputation strategy.  

CMVE has been proven to perform best for locally correlated data, providing 

consistently superior imputation quality compared to all the aforementioned techniques, 

by virtue of the property of recycling estimated values in future predictions34. It is also 

more robust as witnessed by its performance in the presence of high numbers of missing 

values. The main drawback of CMVE, just like all the other contemporary algorithms, is 

the preset value of k which means it does not fully adapt to the correlation structure of 

the data and compromises performance when data has a global structure. 

In summarising the imputation methods reviewed so far, the main assumption relates 

to the underlying correlation structure of the dataset, where KNN, LSImpute and CMVE 

perform better when data is locally correlated, while SVDImpute and BPCA are more 

apposite for missing value estimation in globally correlated datasets. From a post 

genomic knowledge inference viewpoint however, any estimation strategy must be to 

adapt to the correlation data structure so imputation performs equally well for both 

types of correlated data. The next section presents two recent flexible imputation 

methods that exhibit this propitious property, in automatically adapting to the data 
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correlation structure to produce minimal imputation error. 

5. Flexible Imputation Techniques for Microarray Data 

Flexible imputation techniques use to some extent, core building blocks developed for 

their contemporary estimation counterparts in Section 4, and are characterised by 

automatically selecting a priori, the optimal number of estimator genes from the data 

correlation structure. This avoids the problem that if the data is globally correlated, then 

a small number of predictor genes (low k value) may ignore genes that are strongly 

correlated to the gene having the missing value. Conversely when an unnecessarily 

large value of number of genes (high k value) is used this can introduce genes for 

prediction which either has little or no correlation to the gene with missing values. Two 

techniques are reviewed in this category. 

 

Local Least Square Impute (LLSImpute) 8 

This is similar to LSImpute in that it estimates missing values by constructing a linear 

combination of correlated genes using LS principles. The crucial difference is that in 

estimating Yij,, the number of predictor genes k is heuristically determined directly from 

the dataset. To determine the optimum k, LLSImpute artificially removes a known value 

from the most correlated gene gi before iteratively estimating it over a range of k values, 

with the k that produces the minimum estimation error then being used for imputation.  

Kim et al 8 employed the L2 norm as well as Pearson correlation to identify the most 

correlated genes, with the L2 norm reported to perform slightly better than the Pearson 

correlation method for the chosen experimental data, although the difference in 

prediction accuracies between the two approaches was statistically insignificant.  

In comparison with the various traditional and contemporary approaches, LLSImpute 
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adapts to the underlying correlated data structure, with the corollary being superior 

imputation performance, and while it incurs a considerably higher computational cost, 

from a microarray data perspective, missing value estimation accuracy always has a 

greater priority than computational complexity.  

 

Heuristic Collateral Missing Value Imputation (HCMVI)13  

This uses the multi-estimate CMVE algorithm11 detailed in Section 4, as its kernel 

building block to formulate the final imputation of missing value Yij. It is analogous to 

LLSImpute in that it also automatically determines the optimal number of predictor 

genes k by using Monte Carlo (MC) simulation35. It selects multiple matrices with 

known gene expression values with each matrix36 having a selection probability=0.05 in 

the MC simulation. HCMVI then identifies the most correlated matrix from the Pearson 

correlation37 between each selected matrix and the gene expression Y. These known 

values are then estimated by CMVE for a range of k values, with the optimal k being the 

one that generates the minimum estimation error.   

HCMVI retains all the enhanced imputation performance characteristics and 

advantages of the original CMVE algorithm, while crucially automatically adapting to 

the underlying correlation structure of the microarray data, though as with LLSImpute, it 

incurs an additional computational overhead.  

6. Discussion of Results 

This section will rigorously examine the influence of the aforementioned imputation 

strategies have in improving missing-value estimation accuracy for post-genomic 

knowledge discovery methods such as significant gene selection38, allied with the 

biological significance of the imputation. Six different microarray datasets for breast 
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and ovarian cancer tissues are used, with data being log-transformed and normalized, so 

that 0=x and 12 =σ , in order to remove all experimental variations. 

The breast cancer dataset17 contained 7, 7, 8 samples of BRCA1, BRCA2 and 

Sporadic mutations (neither BRCA1 nor BRCA2) respectively, while the ovarian cancer 

dataset 18 contained 16, 16 and 18 samples respectively of BRCA1, BRCA2, Sporadic 

mutations. Each breast cancer data sample contained microarray data of 3226 genes and 

there were 6445 genetic expressions per sample for the ovarian dataset. It is worth 

noting that number probes in both breast and ovarian cancer datasets are different. The 

data are generated by different labs under different experimental conditions and thus 

represent experimental variations. 

To equitably evaluate the performance of the traditional and contemporary imputation 

algorithms on downstream biological analysis methods, the number of predictor genes 

was fixed at k=10 in all experiments. In contrast, the two flexible imputation methods 

(LLSImpute and HMCVI) automatically determine k by adapting to the correlation 

structure of the data. Also in this empirical analysis, the LLSImpute variant based upon 

the L2 norm is applied due to its superior performance8. In the next section, the 

influence of imputation on both significant gene selection and GRN reconstruction 

(STEP 4 in Figure 1) is investigated. 

 

Imputation and Biological significance of selected genes 

To explore the impact of each estimation algorithm upon significant gene selection, a 

set of genes (Gorg) has been chosen from the original dataset using the Between Sum of 

Squares to Within Sum of Squares (BSS/WSS)35 method which identifies genes that 

concomitantly have large inter-class and small intra-class variations. The main reason 
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for adopting this particular method is its proven superior performance capability to 

select significant genes compared with other popular methods such as the t-test39. To 

assess the effect of missing values on gene selection, experiments were performed 

across a missing value range of probabilities from 0.01 to 0.2, with values being 

iteratively removed from the original gene expression in (1). These were then estimated 

using ZeroImpute, KNN, LLSImpute, BPCA, CMVE and HCMVI respectively to form 

Yest prior to being applied to selected sets of p genes using BSS/WSS, for each 

respective estimation matrix. The selected genes have been then compared with Gorg to 

obtain the true positive percentage accuracy (%Accuracy) metric, to provide a 

dispassionate measure of the estimation performance of each algorithm. 

To eliminate performance variations with respect to the number of selected genes in 

the BSS/WSS method, each imputation technique was tested for 50 and 1000 significant 

genes, with the results in Figures 2–5 displaying the respective gene selection 

performance for both the breast and ovarian cancer datasets. These clearly reveal that 

the flexible imputation methods (LLSImpute and HCMVI) consistently produce superior 

performance for both cancer datasets, with HCMVI provides the highest %Accuracy 

metric in the experiments. In contrast, contemporary imputation algorithms like CMVE 

and BPCA were unable to maintain their performance across both datasets, though 

interestingly, CMVE performed better than LLSImpute as well as all the other 

contemporary imputation methods for the breast cancer dataset, which has a 

predominantly localised data correlation structure. This was not however, maintained 

for the more globally correlated ovarian cancer dataset, where BPCA performed better, 

though it correspondingly failed to sustain the improved estimation accuracy for the 

breast cancer data. Not surprisingly, the high-variance traditional imputation approaches 
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such as ZeroImpute and KNN exhibit the poorest performance in Figures 2–5, for both 

cancer datasets, confirming the judgement that incorrectly imputed missing values can 

have a significant potential impact upon overall gene selection performance.  
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Figure 2: Gene Selection Accuracy for 50 Significant Genes in Breast Cancer  
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Gene Selection Accuracy for 1000 Significant Genes in Breast Cancer
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Figure 3: Gene Selection Accuracy for 1000 Significant Genes in Breast Cancer 

Gene Selection Accuracy for 50 Significant Genes in Ovarian Cancer
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Figure 4: Gene Selection Accuracy for 50 Significant Genes in Ovarian Cancer 
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Gene Selection Accuracy for 1000 Significant Genes in Ovarian Cancer
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Figure 5: Gene Selection Accuracy for 1000 Significant Genes in Ovarian Cancer 

 

 
Imputation algorithm performance has normally only been assessed numerically, with 

considerable debate within the research community of the suitability of standard 

evaluation measures, such as Normalised RMS Error (NRMSE). Interpreting the results 

from a biological significance perspective has not received the same attention, though 

the impact of missing values on selected genes in post genomic knowledge discovery is 

clearly a major factor in algorithmic performance assessment. 

 

Biological Significance of Imputation 

While the primary focus is on the estimation accuracy of an imputation method, it is 

equally important to conduct an investigation into the biological significance of certain 

selected genes for the respective datasets when evaluating the impact of missing values 

on gene selection. Indeed, it is constructive to ascertain whether a particular imputation 
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technique assists the gene selection methods in identifying known and novel genes for a 

given sample. This may provide not only valuable information for the design of basic 

mechanistic, diagnostic and biomarker studies, but also valuable data for use in the 

construction of gene networks and pathways involved in processes like oncogenesis and 

resistance to tumour induction.  

In examining the results for both the breast and ovarian cancer datasets, a number of 

genes were overlooked using traditional methods, when missing values were introduced 

and processed, which independent experiments40 have confirmed alter expressions in 

tumor lines and so can be very important in oncogenesis. This set of genes have not 

only been selected by the BSS/WSS algorithm, but have been revalidated using the 

modified t-test with greedy pairs method41 which minimizes the bias of the gene 

selection strategy towards either a particular imputation technique or a set of genes. 

As the results for various gene selection algorithms in Table 1 reveal, that the 

KIAA1025 protein was not always correctly selected when missing values were 

imputed using KNN, BPCA CMVE and LLSImpute, but were consistently identified by 

HCMVI. This is a vital protein which is co-regulated with estrogen receptors for both in 

vivo and clinical data, which are expressed in more than 66% of human breast tumors29. 

Another gene always selected by HCMVI across the range of missing values is 

plakophilin 2 (PKP2) which is a common protein and exhibits a dual role, appearing as 

both a constitutive karyoplasmic protein and a desmosomal plaque component for all 

the desmosome-possessing tissues and cell culture lines. The gene is found in breast 

carcinoma cell lines25 and furthermore, because of its significance, it can serve as a 

marker for the identification and characterisation of carcinomas derived either from or 

corresponding to, simple or complex epithelia 26. 
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Similar observations can be drawn from the study of significant genes in the ovarian 

cancer dataset in Table 2. For instance, MHC Class II=DQ alpha (MHCα) and MHC 

Class II=DQ beta (MHCβ) genes are linked to the immune system and have been shown 

to be down-regulated for ovary syndrome27. The allele gene is also present at a higher 

frequency in patients with malignant melanoma than in Caucasian controls. These genes 

help in particular to diagnose melanoma patients in the relatively advanced stages of the 

disease and/or patients who are more likely to have a recurrence28. The results confirm 

that these genes have been correctly identified by the flexible HCMVI method, while 

being consistently overlooked by other techniques, most notably by all traditional 

imputation algorithms, for missing values probabilities greater than 0.05. 

Interestingly for both cancer datasets, across the full missing value range from 1% to 

20%, these regulated genes have been correctly identified when gene selection has been 

preceded by HCMVI imputation as confirmed in Tables 1 and 2. It highlights that 

consideration of the biological significance of any imputation is extremely important 

and underscores the need for accurate estimation prior to gene selection, particularly in 

the presence of higher numbers of missing values. 

Table 1. KIAA1025 and Plakophilin2 Selection in breast cancer dataset across the range of 
missing values 

% MV HCMVI CMVE LLSImpute BPCA KNN ZeroImpute 

1 KIAA1025  
Plakophilin2 

KIAA1025  
Plakophilin2 

KIAA1025   KIAA1025 

5 KIAA1025  
Plakophilin2 

KIAA1025  
Plakophilin2 

KIAA1025    KIAA1025 

10 KIAA 
Plakophilin2 

KIAA 
Plakophilin2 

    

15 KIAA1025  
Plakophilin2 

KIAA1025  
Plakophilin2 

 
 

   

20 KIAA1025  
Plakophilin2 

     

 
 

Table 2. MHC Class II=DQ alpha (MHCα) and MHC Class II=DQ beta (MHCβ) selection in ovarian 
cancer across the range of missing values 
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% MV HCMVI CMVE LLSImpute BPCA KNN ZeroImpute 

1 MHCα 
MHCβ 

MHCα MHCα MHCα MHCα MHCα 

5 MHCα 
MHCβ 

MHCβ     

10 MHCα 
MHCβ 

     

15 MHCα 
MHCβ 

     

20 MHCα 
MHCβ 

     

 

As alluded earlier, existing GRN reconstruction methods conventionally replace missing 

values by either ZeroImpute or gene average30,42, despite both inevitably impacting upon 

subsequent GRN reconstruction, as will now be more fully examined. 

 

Impact of Missing Values on Gene Regulatory Network Reconstruction  

To evaluate the influence of missing values, the Algorithm for the Reconstruction of 

Accurate Cellular Networks (ARACNe) 43 has been employed because it affords better 

performance over alternative approaches like Bayesian Networks44 and has been tested 

for mammalian gene network reconstruction and compared with other techniques that 

are normally applied to simple eukaryotes such as for instance, Saccharomyces 

Cerevisiae 45.  

ARACNe firstly computes the statistical significant gene-gene co-regulation using 

mutual information before applying a data processing inequality to prune indirect 

relationships, i.e. genes which are co-regulated by either one or more intermediate 

genes. To comparatively evaluate the respective imputation performances on GRN 

reconstruction, the number of conserved links is determined, which represents whether a 

particular co-regulation link is present in both GRNorg and GRNimputed. The gene network 

GRNorg is then initially constructed using ARACNe from the original data Y with no 



24 

missing values. As in the previous experiments, up to 20% missing values have been 

randomly introduced and then respectively estimated using traditional, contemporary 

and flexible imputation methods (Section 3–5 respectively).. The corresponding gene 

networks GRNimputed are then constructed from the imputed data and GRNorg and 

GRNimputed compared to ascertain the Conserved Links. 

  Figures 6-9 show that the ARACNe method, which has been reported to be robust46 for 

GRN construction, does not maintain its performance in the presence of missing values, 

especially for ZeroImpute. In contrast, when a flexible imputation method like HCMVI 

is applied, ARACNe conserves the number of links even at higher missing value 

probabilities. For example, in BRCA1 breast cancer data, the transcriptional link 

between ADP-ribosylation factor 3 (ARF3) and general transcription factor II, i, 

pseudogene 1(GTF2IP1) was overlooked when missing values were imputed by all 

traditional and contemporary methods, but was correctly inferred when values were 

imputed by both HCMVI and LLSImpute. Similarly, the link between HS1 binding 

protein and mitogen-activated protein kinase 3 in BRCA2 breast cancer data was 

reconstructed when values were imputed using HCMVI, but was neglected by all other 

techniques. The results for breast cancer Sporadic data revealed similar observations, 

with for example, the interaction between ADP-ribosylation factor 3 and  EST, which is 

very similar to the NSAP1 protein, being identified when data was imputed using 

flexible methods, while being missed by the other strategies, so corroborating the 

importance of accurate imputation in improving GRN reconstruction performance. 

In the ovarian cancer dataset, the interaction link between Ro ribonucleoprotein 

autoantigen (Ro/SS-A)=autoantigen calreticulin and Glutathione S-transferase theta 1 

was not identified in BRCA1-data, when missing values were introduced but was 
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regenerated when these missing values were imputed using HCMVI. Similarly, co-

regulation between Inhibitor of DNA binding 3, dominant negative helix-loop-helix 

protein and p53 in BRCA2 ovarian cancer dataset was also missed, but the link was 

reconstructed when HMCVI imputation was applied across the range of missing values. 

In the Sporadic ovarian cancer dataset, transcriptional links between CD97 and RAB-10 

were again only successfully reconstructed using HCMVI, while they were overlooked 

by all other estimation methods again underpinning the significance of accurate missing 

value imputation prior to GRN reconstruction. 
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Figure 6: Accuracy of Conserved Links in BRCA1-Breast Cancer Data 
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Figure 7: Accuracy of Conserved Links in Sporadic-Breast Cancer Data 
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Figure 8: Accuracy of Conserved Links in BRCA1-Ovarian Cancer Data 
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Figure 9: Accuracy of Conserved Links in BRCA2-Ovarian Cancer Data 

The impact of missing values on GRN was further investigated on artificially created 

networks. Two artificial expression data sets and networks by Bansal et al47 was used 

for this purpose. Each expression data had 100 probes with 100 samples per probe. The 

networks were constructed using ARACNE with no imputation and compared against 

artificial networks to compute reference area under Receiver Operating Characteristic 

(ROC) curve. Then, 20% missing values were introduced and imputed using HCMVI 

which was followed by network reconstruction using ARACNE under same 

experimental setup to compute area under ROC curve. Figure 10 shows average ROC 

curve for 10 runs with and without imputation. The areas under ROC curve for 

networks 1 and 2 were 0.6653 and 0.5979 respectively when networks were constructed 

from complete dataset. The average areas under ROC were 0.6653 and 0.5901 

respectively when networks were constructed after randomly introducing 20% missing 

values and estimation using HCMVI. Again, the result show that network inference 

performance is upheld if accurate imputation is used prior constructing networks. 
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Figure 10: ROC Plots of Artificial Networks 

  
Significance Test Results 

For completeness, the statistical significance and variance stability of all the various 

imputation methods has been analysed using the two-sided Wilcoxon Rank sum 

statistical significance test. The impetus for applying this test is that it doesn’t assumes 

that data is coming from same distribution, which is particularly important given the 

data variance can be appreciably disturbed by erroneous estimation, as for instance in 

ZeroImpute. To test the hypothesis H0, Y = Yest where Y and Yest are the actual and 

estimated matrices respectively, the P-Value of the hypothesis is determined: 

1 )0, r rH  P-Value 2P (R y= − ≤  (3) 

where yr is the sum of the ranks of observations for Y and R is the corresponding random 

variable. The corresponding results shown in box plot in Figures 11–16 demonstrate 

that traditional approaches tend to rapidly degrade at higher numbers of missing values, 

while both contemporary and flexible imputation techniques maintain a far more 

consistent performance across the range of missing values, see notably in Figures 12 

and 14.  As box plot can be used to display smallest observation, lower quartile, median, 

upper quartile and largest observation and it can also show, if any value is an outlier. 
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This corroborates the fundamental hypothesis that a suitably accurate imputation 

strategy should always be employed for microarray data before any biological down-

streaming analysis is undertaken.  
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Figure 11: Significance Test Results for BRCA1-Breast Cancer Data 
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Figure 12: Significance Test Results for BRCA2-Breast Cancer Data 
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Figure 13: Significance Test Results for Sporadic-Breast Cancer Data 



32 

HCMVI CMVE LLSimpute BPCA KNN ZeroImpute

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
-V

al
ue

s 
of

 S
im

ila
rit

y

Imputation Technique

Significance Test Results for BRCA1-Ovarian Cancer Data

 

Figure 14: Significance Test Results for BRCA1-Ovarian Cancer Data 
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Figure 15: Significance Test Results for BRCA2-Ovarian Cancer Data 
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Figure 16: Significance Test Results for Sporadic-Ovarian Cancer Data 

Normalized Root Mean Square Error 

For completeness the estimation performance of HCMVI and comparative imputation 

methods was also analyzed using the traditional parametric Normalized Root Mean 

Square (NRMS) Error measure, despite its limitations in reflecting the true impact of 

missing values on subsequent biological analysis. NRMS Error is defined as: 

( )
( )

estRMS Y Y
RMS Y

−
Θ =

 
(2)

where Y is the original data matrix and Yest is the estimated matrix using HCMVI, 

CMVE, BPCA, LLSImpute and KNN respectively. This particular measure has been 

used by Sehgal et al, 11, Ouyang et al, 48 and Tuikkala et al 49 for error estimation 

because Θ =1 for zero imputation.  
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Figure 17: NRMS Error in BRCA1-Breast Cancer Data 
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Figure 18- NRMS Error in BRCA2-Breast Cancer Data 
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Figure 19: NRMS ERROR in Sporadic-Breast Cancer Data 
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Figure 20: NRMS ERROR in BRCA1-Ovarian Cancer Data 
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Figure 21: NRMS ERROR in BRCA2-Ovarian Cancer Data 
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Figure 22: NRMS ERROR in Sporadic-Ovarian Cancer Data 

Figures 17-22 show boxplot of NMRS Error for different imputation algorithms (See 

supplementary material for the rest of the results). It again confirms the better 

performance of HCMVI (See notably Figure 19) and reiterates the value of accurately 
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exploiting information about the underlying correlation structure of the data instead of 

using a preset value. Interestingly LLSImpute exhibited similar performance to HCMVI 

so justifying the merit of using other metrics to dispassionately compare the 

performance of different imputation strategies. 

7. Conclusion 

This paper has pragmatically argued that imputation can be effectively applied to 

recycle microarray data and in doing so, provide many potential benefits ranging from 

cost savings to performance enhancements in post genomic knowledge discovery. 

While cognisance is made that ZeroImpute and other traditional missing value 

imputation strategies are straightforward to implement, new flexible methods have been 

proven to exhibit much superior accuracy and performance from both a statistical and 

biological significance perspective, by virtue of their innate ability to exploit any 

underlying data correlation structures. A comprehensive study of missing values in 

microarray data has been presented and their subsequent impact upon post genomic 

knowledge discovery methods, including significant gene selection and gene regulatory 

network reconstruction has been investigated. Empirical analysis has consistently shown 

that rather than merely ignoring missing values, which has been the preferred approach 

to resolve this problem, flexible and robust imputation algorithms afford considerable 

performance benefits and so should wherever possible, be mandated prior to any 

knowledge inference process using microarray data.  
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