The Open UniversitySkip to content

Variation in mitochondrial genotype has substantial lifespan effects which may be modulated by nuclear background

Clancy, David (2008). Variation in mitochondrial genotype has substantial lifespan effects which may be modulated by nuclear background. Aging Cell, 7(6) pp. 795–804.

DOI (Digital Object Identifier) Link:
Google Scholar: Look up in Google Scholar


Mitochondria are thought to play a central role in aging. In humans, specific naturally occurring mitochondrial genetic variants are overrepresented among centenarians, but only in certain populations, so we cannot tell whether this effect is due solely to mitochondrial genetics or to nuclear-mitochondrial gene complexes, nor do we know the magnitude of the effect in terms we can relate to, such as mean lifespan differences. To examine the effects of natural mitochondrial DNA (mtDNA) variation on lifespan we need to vary the mitochondrial genotype while controlling the nuclear genotype. Here, nuclear genome replacement is achieved using strains of Drosophila melanogaster bearing multiply inverted "balancer" chromosomes which suppress recombination, and an isogenic donor strain, thus forcing replacement of entire chromosomes in a single cross while suppressing recombination. Lifespans of wild type mtDNA variants on the chromosome replacement (CR) background vary substantially, and sequencing of the entire protein coding mitochondrial genomes indicates that these lifespan differences are sometimes associated with single amino acid differences. On other nuclear genetic backgrounds, the magnitude and direction of these lifespan effects can change dramatically, and this can be due to changes in baseline mortality risk, rate of aging and/or time of onset of aging. The limited mtDNA variation in D. melanogaster makes it an ideal organism for biochemical studies to link genotype and aging phenotype.

Item Type: Article
ISSN: 1474-9726
Keywords: chromosome replacement; Drosophila; isogenic; lifespan; mitochondria; variation
Academic Unit/School: Faculty of Science, Technology, Engineering and Mathematics (STEM) > Life, Health and Chemical Sciences
Faculty of Science, Technology, Engineering and Mathematics (STEM)
Interdisciplinary Research Centre: Biomedical Research Network (BRN)
Item ID: 11668
Depositing User: Astrid Peterkin
Date Deposited: 15 Sep 2008 00:17
Last Modified: 04 Oct 2016 10:12
Share this page:


Scopus Citations

▼ Automated document suggestions from open access sources

Actions (login may be required)

Policies | Disclaimer

© The Open University   + 44 (0)870 333 4340