Copy the page URI to the clipboard
Ali, M. A.; Dooley, L. S. and Karmakar, G. C.
(2005).
DOI: https://doi.org/10.1109/ITCC.2005.157
Abstract
Results from any existing clustering algorithm that are used for segmentation are highly sensitive to features that limit their generalization. Shape is one important attribute of an object. The detection and separation of an object using fuzzy ring-shaped clustering (FKR) and elliptic ring-shaped clustering (FKE) already exists in the literature. Not all real objects however, are ring or elliptical in shape, so to address these issues, this paper introduces a new shape-based algorithm, called fuzzy image segmentation combining ring and elliptic shaped clustering algorithms (FCRE) by merging the initial segmented results produced by FKR and FKE. The distribution of unclassified pixels is performed by connectedness and fuzzy c-means (FCM) using a combination of pixel intensity and normalized pixel location. Both qualitative and quantitative analysis of the results for different varieties of images proves the superiority of the proposed FCRE algorithm compared with both FKR and FKE.
Viewing alternatives
Download history
Metrics
Public Attention
Altmetrics from AltmetricNumber of Citations
Citations from DimensionsItem Actions
Export
About
- Item ORO ID
- 11659
- Item Type
- Conference or Workshop Item
- Extra Information
- ISBN: 0-7695-2315-3
- Academic Unit or School
-
Faculty of Science, Technology, Engineering and Mathematics (STEM) > Computing and Communications
Faculty of Science, Technology, Engineering and Mathematics (STEM) - Research Group
- Centre for Research in Computing (CRC)
- Depositing User
- Laurence Dooley