Investigating the role of collagen in peripheral nerve biomechanics

Conference or Workshop Item

How to cite:

For guidance on citations see FAQs.

© [not recorded]

Version: Not Set

Link(s) to article on publisher’s website:

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies page.
INVESTIGATING THE ROLE OF COLLAGEN IN PERIPHERAL NERVE BIOMECHANICS

S. Mason1, J.Harle2, J.B. Phillips1

1Department of Life Sciences, The Open University, Milton Keynes.
2Department of Physics and Astronomy, The Open University, Milton Keynes.

INTRODUCTION Peripheral nerves bend and stretch around joints during normal movement. Previous studies have demonstrated that the joint and non-joint areas of rat peripheral nerve are biomechanically diverse, with areas of nerve at joints more compliant than those at non-joint sites1. The rat sciatic nerve consists of bundles of axons surrounded by layers of perineurium and epineurium. Collagen is the most abundant of the structural proteins in these layers2. The aim of this study was to quantify and compare the collagen in the joint and non-joint areas of rat sciatic nerve using electron microscopy and histological techniques.

METHODS Joint and non-joint regions of rat sciatic nerve were resected and prepared for microscopic examination. Digital image analyses were performed on electron and light micrographs to quantify and evaluate the collagen in each nerve section.

RESULTS The collagen ultrastructure of the connective tissue layers of the rat sciatic nerve was revealed by TEM (Fig 1). Martius/Scarlet/Blue (MSB) staining of epi- and perineurial collagen (Fig 2) showed no significant difference between joint and non-joint areas of rat sciatic nerve (Fig 3).

DISCUSSION & CONCLUSIONS There was no significant difference in the quantity of collagen in joint and non-joint areas of sciatic nerve. This implies that the mechanical heterogeneity of peripheral nerves is likely to be due either to other structural proteins, or ultrastructural features of the collagen architecture.