Copy the page URI to the clipboard
Sehgal, M. Shoaib; Gondal, Iqbal; Dooley, Laurence S. and Coppel, Ross
(2008).
DOI: https://doi.org/10.1007/978-3-540-88436-1
Abstract
Microarrays are able to measure the patterns of expression of thousands of genes in a genome to give profiles that facilitate much faster analysis of biological processes for diagnosis, prognosis and tailored drug discovery. Microarrays, however, commonly have missing values which can result in erroneous downstream analysis. To impute these missing values, various algorithms have been proposed including Collateral Missing Value Estimation (CMVE), Bayesian Principal Component Analysis (BPCA), Least Square Impute (LSImpute), Local Least Square Impute (LLSImpute) and K-Nearest Neighbour (KNN). Most of these imputation algorithms exploit either the global or local correlation structure of the data, which normally leads to larger estimation errors. This paper presents an enhanced Heuristic Non Parametric Collateral Missing Value Imputation (HCMVI) algorithm which uses CMVE as its core estimator and Heuristic Non Parametric strategy to compute optimal number of estimator genes to exploit optimally both local and global correlations.
Viewing alternatives
Download history
Metrics
Public Attention
Altmetrics from AltmetricNumber of Citations
Citations from DimensionsItem Actions
Export
About
- Item ORO ID
- 10930
- Item Type
- Book Section
- ISBN
- 3-540-88434-3, 978-3-540-88434-7
- Academic Unit or School
-
Faculty of Science, Technology, Engineering and Mathematics (STEM) > Computing and Communications
Faculty of Science, Technology, Engineering and Mathematics (STEM) - Research Group
- Centre for Research in Computing (CRC)
- Depositing User
- Laurence Dooley