The Open UniversitySkip to content

Residual stress driven creep cracking in AISI Type 316 stainless steel

Turskia, M.; Bouchard, P. J.; Steuwera, A. and Withers, P. J. (2008). Residual stress driven creep cracking in AISI Type 316 stainless steel. Acta Materialia, 56(14) pp. 3598–3612.

DOI (Digital Object Identifier) Link:
Google Scholar: Look up in Google Scholar


Specially designed AISI Type 316H austenitic stainless steel 25 mm thick compact tension specimens have been plastically deformed to produce significant tensile hydrostatic residual stresses at the notch root at mid-thickness. These specimens were thermally exposed at 550 °C for 4500 hours in order to study elevated temperature creep relaxation of residual stress and the development of reheat cracking creep damage. Residual strains within the specimens were measured using diffraction techniques before and after thermal exposure. A three-dimensional finite element model was developed both to predict the residual stress within the specimens before and after thermal exposure. No reheat cracking was found near surface, but due to the reduced creep ductility with increasing hydrostatic stress, significant creep cavitation was found mid-thickness. A previously developed creep damage model was applied to predict the onset of reheat cracking. Good correlation has been found between measurements and finite element predictions of strain and stress before and after thermal exposure. The extent of creep damage has also been assessed through destructive examination, providing validation for the creep damage prediction model.

Item Type: Journal Article
Copyright Holders: 2008 Acta Materialia Inc.
ISSN: 1359-6454
Keywords: neutron diffraction; synchrotron diffraction; creep damage; finite element modelling; austenitic stainless steels
Academic Unit/Department: Mathematics, Computing and Technology > Engineering & Innovation
Mathematics, Computing and Technology
Item ID: 10868
Depositing User: P. John Bouchard
Date Deposited: 20 Jun 2008
Last Modified: 14 Jan 2016 16:58
Share this page:


Scopus Citations

▼ Automated document suggestions from open access sources

Actions (login may be required)

Policies | Disclaimer

© The Open University   + 44 (0)870 333 4340