The Open UniversitySkip to content
 

Optimisation of the Maximum Likelihood Method Using Bias Minimisation

Rahman, M. Z.; Dooley, L. S. and Karmakar, G. C. (2006). Optimisation of the Maximum Likelihood Method Using Bias Minimisation. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP’06), 14-19 May 2006, Toulouse.

URL: http://ieeexplore.ieee.org/search/wrapper.jsp?arnu...
DOI (Digital Object Identifier) Link: http://dx.doi.org/10.1109/ICASSP.2006.1660667
Google Scholar: Look up in Google Scholar

Abstract

Maximum likelihood (ML) is a popular and widely used statistical method, and while it is effective, its major short-comings are that it is a biased and non robust estimator. This paper proposes a formal establishment of an optimisation of ML (OML) by approximating the true distribution minimising the bias, and exploiting the underlying relationship between ML and the maximum entropy method. OML exposes the inefficiency of the classical ML in the orthogonal least square error minimisation sense, for a number of finite sample datasets. The robustness of the proposed OML method in finding an estimate within the boundaries of the parameter space is also proven. Under the same conditions, OML consistently provides a more global and efficient estimation, so both theoretically and empirically establishing its superiority over ML in terms of efficiency and robustness.

Item Type: Conference Item
ISSN: 1520-6149
Academic Unit/Department: Mathematics, Computing and Technology > Computing & Communications
Interdisciplinary Research Centre: Centre for Research in Computing (CRC)
Item ID: 10562
Depositing User: Laurence Dooley
Date Deposited: 10 Apr 2008
Last Modified: 02 Dec 2010 20:07
URI: http://oro.open.ac.uk/id/eprint/10562
Share this page:

Altmetrics

Scopus Citations

Actions (login may be required)

View Item
Report issue / request change

Policies | Disclaimer

© The Open University   + 44 (0)870 333 4340   general-enquiries@open.ac.uk