The Open UniversitySkip to content

Changes in the misfit stresses in an Al/SiCp metal matrix composite under plastic strain

Fitzpatrick, M. E.; Withers, P. J.; Baczmanski, A.; Hutchings, M.T.; Levy, R.; Ceretti, M. and Lodini, A. (2002). Changes in the misfit stresses in an Al/SiCp metal matrix composite under plastic strain. Acta Materialia, 50(5) pp. 1031–1040.

DOI (Digital Object Identifier) Link:
Google Scholar: Look up in Google Scholar


Results are presented from neutron diffraction measurement of the strains in each phase, matrix and reinforcement, of a metal matrix composite bar before and after deformation beyond the elastic limit by four-point bending. The strains in each phase have been converted to stress. A stress separation technique was then applied, and the contributing mechanisms separated and identified. In this way the changes in the different contributions owing to plastic deformation have been determined. It is found that, initially, the average phase stresses can be explained in terms of a combination of essentially hydrostatic phase average thermal misfit stresses in the matrix (tension) and particles (compression) combined with a parabolic macrostress from quenching. After plastic bending the change in axial macrostress is as expected for that for a monolithic bar, but unexpectedly the misfit stresses had relaxed to approximately zero in both the tensile and compressive plastically strained regions of the bar.

Item Type: Journal Article
Copyright Holders: 2002 Acta Materialia Inc.
ISSN: 1359-6454
Keywords: metal matrix composites; residual stress; plasticity effects; neutron diffraction
Academic Unit/Department: Mathematics, Computing and Technology > Engineering & Innovation
Mathematics, Computing and Technology
Item ID: 10397
Depositing User: Michael E. Fitzpatrick
Date Deposited: 18 Feb 2008
Last Modified: 14 Jan 2016 16:52
Share this page:


Scopus Citations

▼ Automated document suggestions from open access sources

Actions (login may be required)

Policies | Disclaimer

© The Open University   + 44 (0)870 333 4340